${SRCDIR}/Level/Dialog.cpp
${SRCDIR}/Level/Hotspot.cpp
${SRCDIR}/Math/Frustum.cpp
- ${SRCDIR}/Math/Quaternions.cpp
+ ${SRCDIR}/Math/XYZ.cpp
${SRCDIR}/Menu/Menu.cpp
${SRCDIR}/Objects/Object.cpp
${SRCDIR}/Objects/Person.cpp
${SRCDIR}/Level/Dialog.hpp
${SRCDIR}/Level/Hotspot.hpp
${SRCDIR}/Math/Frustum.hpp
- ${SRCDIR}/Math/PhysicsMath.hpp
- ${SRCDIR}/Math/Quaternions.hpp
+ ${SRCDIR}/Math/XYZ.hpp
${SRCDIR}/Math/Random.hpp
${SRCDIR}/Menu/Menu.hpp
${SRCDIR}/Objects/Object.hpp
#ifndef _ANIMATION_HPP_
#define _ANIMATION_HPP_
-#include "Math/Quaternions.hpp"
+#include "Math/XYZ.hpp"
#include <vector>
#ifndef _JOINT_HPP_
#define _JOINT_HPP_
-#include "Math/Quaternions.hpp"
+#include "Math/XYZ.hpp"
#include <vector>
#include "Graphic/gamegl.hpp"
#include "Graphic/Models.hpp"
#include "Graphic/Sprite.hpp"
-#include "Math/Quaternions.hpp"
+#include "Math/XYZ.hpp"
#include "Objects/Object.hpp"
#include "Utils/binio.h"
#ifndef _SOUNDS_HPP_
#define _SOUNDS_HPP_
-#include "Math/Quaternions.hpp"
+#include "Math/XYZ.hpp"
enum sound_types {
#define DECLARE_SOUND(id, filename) id,
#include "Audio/Sounds.hpp"
#include "Game.hpp"
-#include "Math/Quaternions.hpp"
+#include "Math/XYZ.hpp"
#include <cstdio>
#include <cstdlib>
#define _OPENAL_WRAPPER_HPP_
#include "MacCompatibility.hpp"
-#include "Math/Quaternions.hpp"
+#include "Math/XYZ.hpp"
#ifdef __APPLE__
#include <OpenAL/al.h>
#define _LIGHTS_HPP_
#include "Graphic/gamegl.hpp"
-#include "Math/Quaternions.hpp"
+#include "Math/XYZ.hpp"
class Light
{
#include "Graphic/gamegl.hpp"
#include "Graphic/Texture.hpp"
-#include "Math/Quaternions.hpp"
-#include "Math/Quaternions.hpp"
+#include "Math/XYZ.hpp"
+#include "Math/XYZ.hpp"
#include "Utils/ImageIO.hpp"
class SkyBox
#include "Graphic/gamegl.hpp"
#include "Graphic/Texture.hpp"
#include "Math/Frustum.hpp"
-#include "Math/Quaternions.hpp"
+#include "Math/XYZ.hpp"
#include "Utils/ImageIO.hpp"
#define max_terrain_size 256
*/
#include "Graphic/Stereo.hpp"
-#include "Math/Quaternions.hpp"
+#include "Math/XYZ.hpp"
#include "Objects/Weapons.hpp"
#include <SDL.h>
class Terrain;
class Model;
-#include "Math/Quaternions.hpp"
+#include "Math/XYZ.hpp"
enum decal_type {
shadowdecal = 0,
#include "Environment/Terrain.hpp"
#include "Graphic/gamegl.hpp"
#include "Graphic/Texture.hpp"
-#include "Math/Quaternions.hpp"
+#include "Math/XYZ.hpp"
#include "Utils/binio.h"
#include <cstdio>
#include "Graphic/gamegl.hpp"
#include "Graphic/Texture.hpp"
#include "Math/Frustum.hpp"
-#include "Math/Quaternions.hpp"
+#include "Math/XYZ.hpp"
#include "Objects/Object.hpp"
#include "Utils/ImageIO.hpp"
#include "Graphic/gamegl.hpp"
#include "Graphic/Texture.hpp"
-#include "Math/Quaternions.hpp"
+#include "Math/XYZ.hpp"
#include "Utils/ImageIO.hpp"
#include <string>
along with Lugaru. If not, see <http://www.gnu.org/licenses/>.
*/
-#include "Math/Quaternions.hpp"
+#include "Math/XYZ.hpp"
#include <string>
#include <vector>
#ifndef _DIALOG_HPP_
#define _DIALOG_HPP_
-#include "Math/Quaternions.hpp"
+#include "Math/XYZ.hpp"
#include <stdio.h>
#include <vector>
#ifndef _HOTSPOT_HPP_
#define _HOTSPOT_HPP_
-#include "Math/Quaternions.hpp"
+#include "Math/XYZ.hpp"
#include <vector>
+++ /dev/null
-/*
-Copyright (C) 2003, 2010 - Wolfire Games
-Copyright (C) 2010-2016 - Lugaru contributors (see AUTHORS file)
-
-This file is part of Lugaru.
-
-Lugaru is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2 of the License, or
-(at your option) any later version.
-
-Lugaru is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with Lugaru. If not, see <http://www.gnu.org/licenses/>.
-*/
-
-#ifndef _PHYSICSMATH_HPP_
-#define _PHYSICSMATH_HPP_
-
-#include "MacCompatibility.hpp"
-
-//------------------------------------------------------------------------//
-// Misc. Constants
-//------------------------------------------------------------------------//
-
-float const pi = 3.14159265f;
-float const g = -32.174f; // acceleration due to gravity, ft/s^2
-float const rho = 0.0023769f; // desity of air at sea level, slugs/ft^3
-float const tol = 0.0000000001f; // float type tolerance
-
-
-//------------------------------------------------------------------------//
-// Misc. Functions
-//------------------------------------------------------------------------//
-inline float DegreesToRadians(float deg);
-inline float RadiansToDegrees(float rad);
-
-inline float DegreesToRadians(float deg)
-{
- return deg * pi / 180.0f;
-}
-
-inline float RadiansToDegrees(float rad)
-{
- return rad * 180.0f / pi;
-}
-
-//------------------------------------------------------------------------//
-// Vector Class and vector functions
-//------------------------------------------------------------------------//
-class Vector
-{
-public:
- float x;
- float y;
- float z;
-
- Vector(void);
- Vector(float xi, float yi, float zi);
-
- float Magnitude(void);
- void Normalize(void);
- void Reverse(void);
-
- Vector& operator+=(Vector u); // vector addition
- Vector& operator-=(Vector u); // vector subtraction
- Vector& operator*=(float s); // scalar multiply
- Vector& operator/=(float s); // scalar divide
-
- Vector operator-(void);
-
-};
-
-inline Vector operator+(Vector u, Vector v);
-inline Vector operator-(Vector u, Vector v);
-inline Vector operator^(Vector u, Vector v);
-inline float operator*(Vector u, Vector v);
-inline Vector operator*(float s, Vector u);
-inline Vector operator*(Vector u, float s);
-inline Vector operator/(Vector u, float s);
-inline float TripleScalarProduct(Vector u, Vector v, Vector w);
-/*
-float fast_sqrt2 (register float arg);
-float fast_sqrt2 (register float arg)
-{
-// Can replace with slower return std::sqrt(arg);
-register float result;
-
-if (arg == 0.0) return 0.0;
-
-asm {
-frsqrte result,arg // Calculate Square root
-}
-
-// Newton Rhapson iterations.
-result = result + 0.5 * result * (1.0 - arg * result * result);
-result = result + 0.5 * result * (1.0 - arg * result * result);
-
-return result * arg;
-}
-*/
-inline Vector::Vector(void)
-{
- x = 0;
- y = 0;
- z = 0;
-}
-
-inline Vector::Vector(float xi, float yi, float zi)
-{
- x = xi;
- y = yi;
- z = zi;
-}
-
-inline float Vector::Magnitude(void)
-{
- return (float) sqrt(x * x + y * y + z * z);
-}
-
-inline void Vector::Normalize(void)
-{
- float m = (float) sqrt(x * x + y * y + z * z);
- if (m <= tol)
- m = 1;
- x /= m;
- y /= m;
- z /= m;
-
- if (fabs(x) < tol)
- x = 0.0f;
- if (fabs(y) < tol)
- y = 0.0f;
- if (fabs(z) < tol)
- z = 0.0f;
-}
-
-inline void Vector::Reverse(void)
-{
- x = -x;
- y = -y;
- z = -z;
-}
-
-inline Vector& Vector::operator+=(Vector u)
-{
- x += u.x;
- y += u.y;
- z += u.z;
- return *this;
-}
-
-inline Vector& Vector::operator-=(Vector u)
-{
- x -= u.x;
- y -= u.y;
- z -= u.z;
- return *this;
-}
-
-inline Vector& Vector::operator*=(float s)
-{
- x *= s;
- y *= s;
- z *= s;
- return *this;
-}
-
-inline Vector& Vector::operator/=(float s)
-{
- x /= s;
- y /= s;
- z /= s;
- return *this;
-}
-
-inline Vector Vector::operator-(void)
-{
- return Vector(-x, -y, -z);
-}
-
-
-inline Vector operator+(Vector u, Vector v)
-{
- return Vector(u.x + v.x, u.y + v.y, u.z + v.z);
-}
-
-inline Vector operator-(Vector u, Vector v)
-{
- return Vector(u.x - v.x, u.y - v.y, u.z - v.z);
-}
-
-// Vector cross product (u cross v)
-inline Vector operator^(Vector u, Vector v)
-{
- return Vector( u.y * v.z - u.z * v.y,
- -u.x * v.z + u.z * v.x,
- u.x * v.y - u.y * v.x );
-}
-
-// Vector dot product
-inline float operator*(Vector u, Vector v)
-{
- return (u.x * v.x + u.y * v.y + u.z * v.z);
-}
-
-inline Vector operator*(float s, Vector u)
-{
- return Vector(u.x * s, u.y * s, u.z * s);
-}
-
-inline Vector operator*(Vector u, float s)
-{
- return Vector(u.x * s, u.y * s, u.z * s);
-}
-
-inline Vector operator/(Vector u, float s)
-{
- return Vector(u.x / s, u.y / s, u.z / s);
-}
-
-// triple scalar product (u dot (v cross w))
-inline float TripleScalarProduct(Vector u, Vector v, Vector w)
-{
- return float( (u.x * (v.y * w.z - v.z * w.y)) +
- (u.y * (-v.x * w.z + v.z * w.x)) +
- (u.z * (v.x * w.y - v.y * w.x)) );
- //return u*(v^w);
-
-}
-
-
-
-//------------------------------------------------------------------------//
-// Matrix Class and matrix functions
-//------------------------------------------------------------------------//
-
-class Matrix3x3
-{
-public:
- // elements eij: i -> row, j -> column
- float e11, e12, e13, e21, e22, e23, e31, e32, e33;
-
- Matrix3x3(void);
- Matrix3x3( float r1c1, float r1c2, float r1c3,
- float r2c1, float r2c2, float r2c3,
- float r3c1, float r3c2, float r3c3 );
-
- float det(void);
- Matrix3x3 Transpose(void);
- Matrix3x3 Inverse(void);
-
- Matrix3x3& operator+=(Matrix3x3 m);
- Matrix3x3& operator-=(Matrix3x3 m);
- Matrix3x3& operator*=(float s);
- Matrix3x3& operator/=(float s);
-};
-
-inline Matrix3x3 operator+(Matrix3x3 m1, Matrix3x3 m2);
-inline Matrix3x3 operator-(Matrix3x3 m1, Matrix3x3 m2);
-inline Matrix3x3 operator/(Matrix3x3 m, float s);
-inline Matrix3x3 operator*(Matrix3x3 m1, Matrix3x3 m2);
-inline Matrix3x3 operator*(Matrix3x3 m, float s);
-inline Matrix3x3 operator*(float s, Matrix3x3 m);
-inline Vector operator*(Matrix3x3 m, Vector u);
-inline Vector operator*(Vector u, Matrix3x3 m);
-
-
-
-
-
-inline Matrix3x3::Matrix3x3(void)
-{
- e11 = 0;
- e12 = 0;
- e13 = 0;
- e21 = 0;
- e22 = 0;
- e23 = 0;
- e31 = 0;
- e32 = 0;
- e33 = 0;
-}
-
-inline Matrix3x3::Matrix3x3( float r1c1, float r1c2, float r1c3,
- float r2c1, float r2c2, float r2c3,
- float r3c1, float r3c2, float r3c3 )
-{
- e11 = r1c1;
- e12 = r1c2;
- e13 = r1c3;
- e21 = r2c1;
- e22 = r2c2;
- e23 = r2c3;
- e31 = r3c1;
- e32 = r3c2;
- e33 = r3c3;
-}
-
-inline float Matrix3x3::det(void)
-{
- return e11 * e22 * e33 -
- e11 * e32 * e23 +
- e21 * e32 * e13 -
- e21 * e12 * e33 +
- e31 * e12 * e23 -
- e31 * e22 * e13;
-}
-
-inline Matrix3x3 Matrix3x3::Transpose(void)
-{
- return Matrix3x3(e11, e21, e31, e12, e22, e32, e13, e23, e33);
-}
-
-inline Matrix3x3 Matrix3x3::Inverse(void)
-{
- float d = e11 * e22 * e33 -
- e11 * e32 * e23 +
- e21 * e32 * e13 -
- e21 * e12 * e33 +
- e31 * e12 * e23 -
- e31 * e22 * e13;
-
- if (d == 0)
- d = 1;
-
- return Matrix3x3( (e22 * e33 - e23 * e32) / d,
- -(e12 * e33 - e13 * e32) / d,
- (e12 * e23 - e13 * e22) / d,
- -(e21 * e33 - e23 * e31) / d,
- (e11 * e33 - e13 * e31) / d,
- -(e11 * e23 - e13 * e21) / d,
- (e21 * e32 - e22 * e31) / d,
- -(e11 * e32 - e12 * e31) / d,
- (e11 * e22 - e12 * e21) / d );
-}
-
-inline Matrix3x3& Matrix3x3::operator+=(Matrix3x3 m)
-{
- e11 += m.e11;
- e12 += m.e12;
- e13 += m.e13;
- e21 += m.e21;
- e22 += m.e22;
- e23 += m.e23;
- e31 += m.e31;
- e32 += m.e32;
- e33 += m.e33;
- return *this;
-}
-
-inline Matrix3x3& Matrix3x3::operator-=(Matrix3x3 m)
-{
- e11 -= m.e11;
- e12 -= m.e12;
- e13 -= m.e13;
- e21 -= m.e21;
- e22 -= m.e22;
- e23 -= m.e23;
- e31 -= m.e31;
- e32 -= m.e32;
- e33 -= m.e33;
- return *this;
-}
-
-inline Matrix3x3& Matrix3x3::operator*=(float s)
-{
- e11 *= s;
- e12 *= s;
- e13 *= s;
- e21 *= s;
- e22 *= s;
- e23 *= s;
- e31 *= s;
- e32 *= s;
- e33 *= s;
- return *this;
-}
-
-inline Matrix3x3& Matrix3x3::operator/=(float s)
-{
- e11 /= s;
- e12 /= s;
- e13 /= s;
- e21 /= s;
- e22 /= s;
- e23 /= s;
- e31 /= s;
- e32 /= s;
- e33 /= s;
- return *this;
-}
-
-inline Matrix3x3 operator+(Matrix3x3 m1, Matrix3x3 m2)
-{
- return Matrix3x3( m1.e11 + m2.e11,
- m1.e12 + m2.e12,
- m1.e13 + m2.e13,
- m1.e21 + m2.e21,
- m1.e22 + m2.e22,
- m1.e23 + m2.e23,
- m1.e31 + m2.e31,
- m1.e32 + m2.e32,
- m1.e33 + m2.e33);
-}
-
-inline Matrix3x3 operator-(Matrix3x3 m1, Matrix3x3 m2)
-{
- return Matrix3x3( m1.e11 - m2.e11,
- m1.e12 - m2.e12,
- m1.e13 - m2.e13,
- m1.e21 - m2.e21,
- m1.e22 - m2.e22,
- m1.e23 - m2.e23,
- m1.e31 - m2.e31,
- m1.e32 - m2.e32,
- m1.e33 - m2.e33);
-}
-
-inline Matrix3x3 operator/(Matrix3x3 m, float s)
-{
- return Matrix3x3( m.e11 / s,
- m.e12 / s,
- m.e13 / s,
- m.e21 / s,
- m.e22 / s,
- m.e23 / s,
- m.e31 / s,
- m.e32 / s,
- m.e33 / s);
-}
-
-inline Matrix3x3 operator*(Matrix3x3 m1, Matrix3x3 m2)
-{
- return Matrix3x3( m1.e11 * m2.e11 + m1.e12 * m2.e21 + m1.e13 * m2.e31,
- m1.e11 * m2.e12 + m1.e12 * m2.e22 + m1.e13 * m2.e32,
- m1.e11 * m2.e13 + m1.e12 * m2.e23 + m1.e13 * m2.e33,
- m1.e21 * m2.e11 + m1.e22 * m2.e21 + m1.e23 * m2.e31,
- m1.e21 * m2.e12 + m1.e22 * m2.e22 + m1.e23 * m2.e32,
- m1.e21 * m2.e13 + m1.e22 * m2.e23 + m1.e23 * m2.e33,
- m1.e31 * m2.e11 + m1.e32 * m2.e21 + m1.e33 * m2.e31,
- m1.e31 * m2.e12 + m1.e32 * m2.e22 + m1.e33 * m2.e32,
- m1.e31 * m2.e13 + m1.e32 * m2.e23 + m1.e33 * m2.e33 );
-}
-
-inline Matrix3x3 operator*(Matrix3x3 m, float s)
-{
- return Matrix3x3( m.e11 * s,
- m.e12 * s,
- m.e13 * s,
- m.e21 * s,
- m.e22 * s,
- m.e23 * s,
- m.e31 * s,
- m.e32 * s,
- m.e33 * s);
-}
-
-inline Matrix3x3 operator*(float s, Matrix3x3 m)
-{
- return Matrix3x3( m.e11 * s,
- m.e12 * s,
- m.e13 * s,
- m.e21 * s,
- m.e22 * s,
- m.e23 * s,
- m.e31 * s,
- m.e32 * s,
- m.e33 * s);
-}
-
-inline Vector operator*(Matrix3x3 m, Vector u)
-{
- return Vector( m.e11 * u.x + m.e12 * u.y + m.e13 * u.z,
- m.e21 * u.x + m.e22 * u.y + m.e23 * u.z,
- m.e31 * u.x + m.e32 * u.y + m.e33 * u.z);
-}
-
-inline Vector operator*(Vector u, Matrix3x3 m)
-{
- return Vector( u.x * m.e11 + u.y * m.e21 + u.z * m.e31,
- u.x * m.e12 + u.y * m.e22 + u.z * m.e32,
- u.x * m.e13 + u.y * m.e23 + u.z * m.e33);
-}
-
-//------------------------------------------------------------------------//
-// Quaternion Class and Quaternion functions
-//------------------------------------------------------------------------//
-
-class Quaternion
-{
-public:
- float n; // number (scalar) part
- Vector v; // vector part: v.x, v.y, v.z
-
- Quaternion(void);
- Quaternion(float e0, float e1, float e2, float e3);
-
- float Magnitude(void);
- Vector GetVector(void);
- float GetScalar(void);
- Quaternion operator+=(Quaternion q);
- Quaternion operator-=(Quaternion q);
- Quaternion operator*=(float s);
- Quaternion operator/=(float s);
- Quaternion operator~(void) const {
- return Quaternion(n, -v.x, -v.y, -v.z);
- }
-};
-
-inline Quaternion operator+(Quaternion q1, Quaternion q2);
-inline Quaternion operator-(Quaternion q1, Quaternion q2);
-inline Quaternion operator*(Quaternion q1, Quaternion q2);
-inline Quaternion operator*(Quaternion q, float s);
-inline Quaternion operator*(float s, Quaternion q);
-inline Quaternion operator*(Quaternion q, Vector v);
-inline Quaternion operator*(Vector v, Quaternion q);
-inline Quaternion operator/(Quaternion q, float s);
-inline float QGetAngle(Quaternion q);
-inline Vector QGetAxis(Quaternion q);
-inline Quaternion QRotate(Quaternion q1, Quaternion q2);
-inline Vector QVRotate(Quaternion q, Vector v);
-inline Quaternion MakeQFromEulerAngles(float x, float y, float z);
-inline Vector MakeEulerAnglesFromQ(Quaternion q);
-
-
-inline Quaternion::Quaternion(void)
-{
- n = 0;
- v.x = 0;
- v.y = 0;
- v.z = 0;
-}
-
-inline Quaternion::Quaternion(float e0, float e1, float e2, float e3)
-{
- n = e0;
- v.x = e1;
- v.y = e2;
- v.z = e3;
-}
-
-inline float Quaternion::Magnitude(void)
-{
- return (float) sqrt(n * n + v.x * v.x + v.y * v.y + v.z * v.z);
-}
-
-inline Vector Quaternion::GetVector(void)
-{
- return Vector(v.x, v.y, v.z);
-}
-
-inline float Quaternion::GetScalar(void)
-{
- return n;
-}
-
-inline Quaternion Quaternion::operator+=(Quaternion q)
-{
- n += q.n;
- v.x += q.v.x;
- v.y += q.v.y;
- v.z += q.v.z;
- return *this;
-}
-
-inline Quaternion Quaternion::operator-=(Quaternion q)
-{
- n -= q.n;
- v.x -= q.v.x;
- v.y -= q.v.y;
- v.z -= q.v.z;
- return *this;
-}
-
-inline Quaternion Quaternion::operator*=(float s)
-{
- n *= s;
- v.x *= s;
- v.y *= s;
- v.z *= s;
- return *this;
-}
-
-inline Quaternion Quaternion::operator/=(float s)
-{
- n /= s;
- v.x /= s;
- v.y /= s;
- v.z /= s;
- return *this;
-}
-
-/*inline Quaternion Quaternion::operator~()
-{
-return Quaternion(n, -v.x, -v.y, -v.z);
-}*/
-
-inline Quaternion operator+(Quaternion q1, Quaternion q2)
-{
- return Quaternion( q1.n + q2.n,
- q1.v.x + q2.v.x,
- q1.v.y + q2.v.y,
- q1.v.z + q2.v.z);
-}
-
-inline Quaternion operator-(Quaternion q1, Quaternion q2)
-{
- return Quaternion( q1.n - q2.n,
- q1.v.x - q2.v.x,
- q1.v.y - q2.v.y,
- q1.v.z - q2.v.z);
-}
-
-inline Quaternion operator*(Quaternion q1, Quaternion q2)
-{
- return Quaternion( q1.n * q2.n - q1.v.x * q2.v.x - q1.v.y * q2.v.y - q1.v.z * q2.v.z,
- q1.n * q2.v.x + q1.v.x * q2.n + q1.v.y * q2.v.z - q1.v.z * q2.v.y,
- q1.n * q2.v.y + q1.v.y * q2.n + q1.v.z * q2.v.x - q1.v.x * q2.v.z,
- q1.n * q2.v.z + q1.v.z * q2.n + q1.v.x * q2.v.y - q1.v.y * q2.v.x);
-}
-
-inline Quaternion operator*(Quaternion q, float s)
-{
- return Quaternion(q.n * s, q.v.x * s, q.v.y * s, q.v.z * s);
-}
-
-inline Quaternion operator*(float s, Quaternion q)
-{
- return Quaternion(q.n * s, q.v.x * s, q.v.y * s, q.v.z * s);
-}
-
-inline Quaternion operator*(Quaternion q, Vector v)
-{
- return Quaternion( -(q.v.x * v.x + q.v.y * v.y + q.v.z * v.z),
- q.n * v.x + q.v.y * v.z - q.v.z * v.y,
- q.n * v.y + q.v.z * v.x - q.v.x * v.z,
- q.n * v.z + q.v.x * v.y - q.v.y * v.x);
-}
-
-inline Quaternion operator*(Vector v, Quaternion q)
-{
- return Quaternion( -(q.v.x * v.x + q.v.y * v.y + q.v.z * v.z),
- q.n * v.x + q.v.z * v.y - q.v.y * v.z,
- q.n * v.y + q.v.x * v.z - q.v.z * v.x,
- q.n * v.z + q.v.y * v.x - q.v.x * v.y);
-}
-
-inline Quaternion operator/(Quaternion q, float s)
-{
- return Quaternion(q.n / s, q.v.x / s, q.v.y / s, q.v.z / s);
-}
-
-inline float QGetAngle(Quaternion q)
-{
- return (float) (2 * acosf(q.n));
-}
-
-inline Vector QGetAxis(Quaternion q)
-{
- Vector v;
- float m;
-
- v = q.GetVector();
- m = v.Magnitude();
-
- if (m <= tol)
- return Vector();
- else
- return v / m;
-}
-
-inline Quaternion QRotate(Quaternion q1, Quaternion q2)
-{
- return q1 * q2 * (~q1);
-}
-
-inline Vector QVRotate(Quaternion q, Vector v)
-{
- Quaternion t;
-
-
- t = q * v * (~q);
-
- return t.GetVector();
-}
-
-inline Quaternion MakeQFromEulerAngles(float x, float y, float z)
-{
- Quaternion q;
- double roll = DegreesToRadians(x);
- double pitch = DegreesToRadians(y);
- double yaw = DegreesToRadians(z);
-
- double cyaw, cpitch, croll, syaw, spitch, sroll;
- double cyawcpitch, syawspitch, cyawspitch, syawcpitch;
-
- cyaw = cos(0.5f * yaw);
- cpitch = cos(0.5f * pitch);
- croll = cos(0.5f * roll);
- syaw = sin(0.5f * yaw);
- spitch = sin(0.5f * pitch);
- sroll = sin(0.5f * roll);
-
- cyawcpitch = cyaw * cpitch;
- syawspitch = syaw * spitch;
- cyawspitch = cyaw * spitch;
- syawcpitch = syaw * cpitch;
-
- q.n = (float) (cyawcpitch * croll + syawspitch * sroll);
- q.v.x = (float) (cyawcpitch * sroll - syawspitch * croll);
- q.v.y = (float) (cyawspitch * croll + syawcpitch * sroll);
- q.v.z = (float) (syawcpitch * croll - cyawspitch * sroll);
-
- return q;
-}
-
-inline Vector MakeEulerAnglesFromQ(Quaternion q)
-{
- double r11, r21, r31, r32, r33;
- double q00, q11, q22, q33;
- double tmp;
- Vector u;
-
- q00 = q.n * q.n;
- q11 = q.v.x * q.v.x;
- q22 = q.v.y * q.v.y;
- q33 = q.v.z * q.v.z;
-
- r11 = q00 + q11 - q22 - q33;
- r21 = 2 * (q.v.x * q.v.y + q.n * q.v.z);
- r31 = 2 * (q.v.x * q.v.z - q.n * q.v.y);
- r32 = 2 * (q.v.y * q.v.z + q.n * q.v.x);
- r33 = q00 - q11 - q22 + q33;
-
- tmp = fabs(r31);
- if (tmp > 0.999999) {
- double r12 = 2 * (q.v.x * q.v.y - q.n * q.v.z);
- double r13 = 2 * (q.v.x * q.v.z + q.n * q.v.y);
-
- u.x = RadiansToDegrees(0.0f); //roll
- u.y = RadiansToDegrees((float) (-(pi / 2) * r31 / tmp)); // pitch
- u.z = RadiansToDegrees((float) atan2(-r12, -r31 * r13)); // yaw
- return u;
- }
-
- u.x = RadiansToDegrees((float) atan2(r32, r33)); // roll
- u.y = RadiansToDegrees((float) asinf(-r31)); // pitch
- u.z = RadiansToDegrees((float) atan2(r21, r11)); // yaw
- return u;
-
-
-}
-
-
-
-
-
-#endif
+++ /dev/null
-/*
-Copyright (C) 2003, 2010 - Wolfire Games
-Copyright (C) 2010-2016 - Lugaru contributors (see AUTHORS file)
-
-This file is part of Lugaru.
-
-Lugaru is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2 of the License, or
-(at your option) any later version.
-
-Lugaru is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with Lugaru. If not, see <http://www.gnu.org/licenses/>.
-*/
-
-#include "Math/Quaternions.hpp"
-
-// Functions
-quaternion Quat_Mult(quaternion q1, quaternion q2)
-{
- quaternion QResult;
- float a, b, c, d, e, f, g, h;
- a = (q1.w + q1.x) * (q2.w + q2.x);
- b = (q1.z - q1.y) * (q2.y - q2.z);
- c = (q1.w - q1.x) * (q2.y + q2.z);
- d = (q1.y + q1.z) * (q2.w - q2.x);
- e = (q1.x + q1.z) * (q2.x + q2.y);
- f = (q1.x - q1.z) * (q2.x - q2.y);
- g = (q1.w + q1.y) * (q2.w - q2.z);
- h = (q1.w - q1.y) * (q2.w + q2.z);
- QResult.w = b + (-e - f + g + h) / 2;
- QResult.x = a - (e + f + g + h) / 2;
- QResult.y = c + (e - f + g - h) / 2;
- QResult.z = d + (e - f - g + h) / 2;
- return QResult;
-}
-
-
-
-quaternion To_Quat(Matrix_t m)
-{
- // From Jason Shankel, (C) 2000.
- static quaternion Quat;
-
- static double Tr = m[0][0] + m[1][1] + m[2][2] + 1.0, fourD;
- static double q[4];
-
- static int i, j, k;
- if (Tr >= 1.0) {
- fourD = 2.0 * fast_sqrt(Tr);
- q[3] = fourD / 4.0;
- q[0] = (m[2][1] - m[1][2]) / fourD;
- q[1] = (m[0][2] - m[2][0]) / fourD;
- q[2] = (m[1][0] - m[0][1]) / fourD;
- } else {
- if (m[0][0] > m[1][1]) {
- i = 0;
- } else {
- i = 1;
- }
- if (m[2][2] > m[i][i]) {
- i = 2;
- }
- j = (i + 1) % 3;
- k = (j + 1) % 3;
- fourD = 2.0 * fast_sqrt(m[i][i] - m[j][j] - m[k][k] + 1.0);
- q[i] = fourD / 4.0;
- q[j] = (m[j][i] + m[i][j]) / fourD;
- q[k] = (m[k][i] + m[i][k]) / fourD;
- q[3] = (m[j][k] - m[k][j]) / fourD;
- }
-
- Quat.x = q[0];
- Quat.y = q[1];
- Quat.z = q[2];
- Quat.w = q[3];
- return Quat;
-}
-void Quat_2_Matrix(quaternion Quat, Matrix_t m)
-{
- // From the GLVelocity site (http://glvelocity.gamedev.net)
- float fW = Quat.w;
- float fX = Quat.x;
- float fY = Quat.y;
- float fZ = Quat.z;
- float fXX = fX * fX;
- float fYY = fY * fY;
- float fZZ = fZ * fZ;
- m[0][0] = 1.0f - 2.0f * (fYY + fZZ);
- m[1][0] = 2.0f * (fX * fY + fW * fZ);
- m[2][0] = 2.0f * (fX * fZ - fW * fY);
- m[3][0] = 0.0f;
- m[0][1] = 2.0f * (fX * fY - fW * fZ);
- m[1][1] = 1.0f - 2.0f * (fXX + fZZ);
- m[2][1] = 2.0f * (fY * fZ + fW * fX);
- m[3][1] = 0.0f;
- m[0][2] = 2.0f * (fX * fZ + fW * fY);
- m[1][2] = 2.0f * (fX * fZ - fW * fX);
- m[2][2] = 1.0f - 2.0f * (fXX + fYY);
- m[3][2] = 0.0f;
- m[0][3] = 0.0f;
- m[1][3] = 0.0f;
- m[2][3] = 0.0f;
- m[3][3] = 1.0f;
-}
-quaternion To_Quat(angle_axis Ang_Ax)
-{
- // From the Quaternion Powers article on gamedev.net
- static quaternion Quat;
-
- Quat.x = Ang_Ax.x * sin(Ang_Ax.angle / 2);
- Quat.y = Ang_Ax.y * sin(Ang_Ax.angle / 2);
- Quat.z = Ang_Ax.z * sin(Ang_Ax.angle / 2);
- Quat.w = cos(Ang_Ax.angle / 2);
- return Quat;
-}
-angle_axis Quat_2_AA(quaternion Quat)
-{
- static angle_axis Ang_Ax;
- static float scale, tw;
- tw = (float)acosf(Quat.w) * 2;
- scale = (float)sin(tw / 2.0);
- Ang_Ax.x = Quat.x / scale;
- Ang_Ax.y = Quat.y / scale;
- Ang_Ax.z = Quat.z / scale;
-
- Ang_Ax.angle = 2.0 * acosf(Quat.w) / (float)PI * 180;
- return Ang_Ax;
-}
-
-quaternion To_Quat(int In_Degrees, euler Euler)
-{
- // From the gamasutra quaternion article
- static quaternion Quat;
- static float cr, cp, cy, sr, sp, sy, cpcy, spsy;
- //If we are in Degree mode, convert to Radians
- if (In_Degrees) {
- Euler.x = Euler.x * (float)PI / 180;
- Euler.y = Euler.y * (float)PI / 180;
- Euler.z = Euler.z * (float)PI / 180;
- }
- //Calculate trig identities
- //Formerly roll, pitch, yaw
- cr = float(cos(Euler.x / 2));
- cp = float(cos(Euler.y / 2));
- cy = float(cos(Euler.z / 2));
- sr = float(sin(Euler.x / 2));
- sp = float(sin(Euler.y / 2));
- sy = float(sin(Euler.z / 2));
-
- cpcy = cp * cy;
- spsy = sp * sy;
- Quat.w = cr * cpcy + sr * spsy;
- Quat.x = sr * cpcy - cr * spsy;
- Quat.y = cr * sp * cy + sr * cp * sy;
- Quat.z = cr * cp * sy - sr * sp * cy;
-
- return Quat;
-}
-
-quaternion QNormalize(quaternion Quat)
-{
- static float norm;
- norm = Quat.x * Quat.x +
- Quat.y * Quat.y +
- Quat.z * Quat.z +
- Quat.w * Quat.w;
- Quat.x = float(Quat.x / norm);
- Quat.y = float(Quat.y / norm);
- Quat.z = float(Quat.z / norm);
- Quat.w = float(Quat.w / norm);
- return Quat;
-}
-
-XYZ Quat2Vector(quaternion Quat)
-{
- QNormalize(Quat);
-
- float fW = Quat.w;
- float fX = Quat.x;
- float fY = Quat.y;
- float fZ = Quat.z;
-
- XYZ tempvec;
-
- tempvec.x = 2.0f * (fX * fZ - fW * fY);
- tempvec.y = 2.0f * (fY * fZ + fW * fX);
- tempvec.z = 1.0f - 2.0f * (fX * fX + fY * fY);
-
- return tempvec;
-}
-
-bool PointInTriangle(Vector *p, Vector normal, float p11, float p12, float p13, float p21, float p22, float p23, float p31, float p32, float p33)
-{
- static float u0, u1, u2;
- static float v0, v1, v2;
- static float a, b;
- static float max;
- static int i, j;
- static bool bInter;
- static float pointv[3];
- static float p1v[3];
- static float p2v[3];
- static float p3v[3];
- static float normalv[3];
-
- bInter = 0;
-
- pointv[0] = p->x;
- pointv[1] = p->y;
- pointv[2] = p->z;
-
-
- p1v[0] = p11;
- p1v[1] = p12;
- p1v[2] = p13;
-
- p2v[0] = p21;
- p2v[1] = p22;
- p2v[2] = p23;
-
- p3v[0] = p31;
- p3v[1] = p32;
- p3v[2] = p33;
-
- normalv[0] = normal.x;
- normalv[1] = normal.y;
- normalv[2] = normal.z;
-
-#define ABS(X) (((X)<0.f)?-(X):(X) )
-#define MAX(A, B) (((A)<(B))?(B):(A))
- max = MAX(MAX(ABS(normalv[0]), ABS(normalv[1])), ABS(normalv[2]));
-#undef MAX
- if (max == ABS(normalv[0])) {
- i = 1; // y, z
- j = 2;
- }
- if (max == ABS(normalv[1])) {
- i = 0; // x, z
- j = 2;
- }
- if (max == ABS(normalv[2])) {
- i = 0; // x, y
- j = 1;
- }
-#undef ABS
-
- u0 = pointv[i] - p1v[i];
- v0 = pointv[j] - p1v[j];
- u1 = p2v[i] - p1v[i];
- v1 = p2v[j] - p1v[j];
- u2 = p3v[i] - p1v[i];
- v2 = p3v[j] - p1v[j];
-
- if (u1 > -1.0e-05f && u1 < 1.0e-05f) { // == 0.0f)
- b = u0 / u2;
- if (0.0f <= b && b <= 1.0f) {
- a = (v0 - b * v2) / v1;
- if ((a >= 0.0f) && (( a + b ) <= 1.0f))
- bInter = 1;
- }
- } else {
- b = (v0 * u1 - u0 * v1) / (v2 * u1 - u2 * v1);
- if (0.0f <= b && b <= 1.0f) {
- a = (u0 - b * u2) / u1;
- if ((a >= 0.0f) && (( a + b ) <= 1.0f ))
- bInter = 1;
- }
- }
-
- return bInter;
-}
-
-bool LineFacet(Vector p1, Vector p2, Vector pa, Vector pb, Vector pc, Vector *p)
-{
- static float d;
- static float denom, mu;
- static Vector n;
-
- //Calculate the parameters for the plane
- n.x = (pb.y - pa.y) * (pc.z - pa.z) - (pb.z - pa.z) * (pc.y - pa.y);
- n.y = (pb.z - pa.z) * (pc.x - pa.x) - (pb.x - pa.x) * (pc.z - pa.z);
- n.z = (pb.x - pa.x) * (pc.y - pa.y) - (pb.y - pa.y) * (pc.x - pa.x);
- n.Normalize();
- d = - n.x * pa.x - n.y * pa.y - n.z * pa.z;
-
- //Calculate the position on the line that intersects the plane
- denom = n.x * (p2.x - p1.x) + n.y * (p2.y - p1.y) + n.z * (p2.z - p1.z);
- if (fabs(denom) < 0.0000001) // Line and plane don't intersect
- return 0;
- mu = - (d + n.x * p1.x + n.y * p1.y + n.z * p1.z) / denom;
- p->x = p1.x + mu * (p2.x - p1.x);
- p->y = p1.y + mu * (p2.y - p1.y);
- p->z = p1.z + mu * (p2.z - p1.z);
- if (mu < 0 || mu > 1) // Intersection not along line segment
- return 0;
-
- if (!PointInTriangle( p, n, pa.x, pa.y, pa.z, pb.x, pb.y, pb.z, pc.x, pc.y, pc.z)) {
- return 0;
- }
-
- return 1;
-}
-
-bool PointInTriangle(XYZ *p, XYZ normal, XYZ *p1, XYZ *p2, XYZ *p3)
-{
- static float u0, u1, u2;
- static float v0, v1, v2;
- static float a, b;
- static float max;
- static int i, j;
- static bool bInter = 0;
- static float pointv[3];
- static float p1v[3];
- static float p2v[3];
- static float p3v[3];
- static float normalv[3];
-
- bInter = 0;
-
- pointv[0] = p->x;
- pointv[1] = p->y;
- pointv[2] = p->z;
-
-
- p1v[0] = p1->x;
- p1v[1] = p1->y;
- p1v[2] = p1->z;
-
- p2v[0] = p2->x;
- p2v[1] = p2->y;
- p2v[2] = p2->z;
-
- p3v[0] = p3->x;
- p3v[1] = p3->y;
- p3v[2] = p3->z;
-
- normalv[0] = normal.x;
- normalv[1] = normal.y;
- normalv[2] = normal.z;
-
-#define ABS(X) (((X)<0.f)?-(X):(X) )
-#define MAX(A, B) (((A)<(B))?(B):(A))
- max = MAX(MAX(ABS(normalv[0]), ABS(normalv[1])), ABS(normalv[2]));
-#undef MAX
- if (max == ABS(normalv[0])) {
- i = 1; // y, z
- j = 2;
- }
- if (max == ABS(normalv[1])) {
- i = 0; // x, z
- j = 2;
- }
- if (max == ABS(normalv[2])) {
- i = 0; // x, y
- j = 1;
- }
-#undef ABS
-
- u0 = pointv[i] - p1v[i];
- v0 = pointv[j] - p1v[j];
- u1 = p2v[i] - p1v[i];
- v1 = p2v[j] - p1v[j];
- u2 = p3v[i] - p1v[i];
- v2 = p3v[j] - p1v[j];
-
- if (u1 > -1.0e-05f && u1 < 1.0e-05f) { // == 0.0f)
- b = u0 / u2;
- if (0.0f <= b && b <= 1.0f) {
- a = (v0 - b * v2) / v1;
- if ((a >= 0.0f) && (( a + b ) <= 1.0f))
- bInter = 1;
- }
- } else {
- b = (v0 * u1 - u0 * v1) / (v2 * u1 - u2 * v1);
- if (0.0f <= b && b <= 1.0f) {
- a = (u0 - b * u2) / u1;
- if ((a >= 0.0f) && (( a + b ) <= 1.0f ))
- bInter = 1;
- }
- }
-
- return bInter;
-}
-
-bool LineFacet(XYZ p1, XYZ p2, XYZ pa, XYZ pb, XYZ pc, XYZ *p)
-{
- static float d;
- static float denom, mu;
- static XYZ n;
-
- //Calculate the parameters for the plane
- n.x = (pb.y - pa.y) * (pc.z - pa.z) - (pb.z - pa.z) * (pc.y - pa.y);
- n.y = (pb.z - pa.z) * (pc.x - pa.x) - (pb.x - pa.x) * (pc.z - pa.z);
- n.z = (pb.x - pa.x) * (pc.y - pa.y) - (pb.y - pa.y) * (pc.x - pa.x);
- Normalise(&n);
- d = - n.x * pa.x - n.y * pa.y - n.z * pa.z;
-
- //Calculate the position on the line that intersects the plane
- denom = n.x * (p2.x - p1.x) + n.y * (p2.y - p1.y) + n.z * (p2.z - p1.z);
- if (fabs(denom) < 0.0000001) // Line and plane don't intersect
- return 0;
- mu = - (d + n.x * p1.x + n.y * p1.y + n.z * p1.z) / denom;
- p->x = p1.x + mu * (p2.x - p1.x);
- p->y = p1.y + mu * (p2.y - p1.y);
- p->z = p1.z + mu * (p2.z - p1.z);
- if (mu < 0 || mu > 1) // Intersection not along line segment
- return 0;
-
- if (!PointInTriangle( p, n, &pa, &pb, &pc)) {
- return 0;
- }
-
- return 1;
-}
-
-float LineFacetd(XYZ p1, XYZ p2, XYZ pa, XYZ pb, XYZ pc, XYZ *p)
-{
- static float d;
- static float denom, mu;
- static XYZ n;
-
- //Calculate the parameters for the plane
- n.x = (pb.y - pa.y) * (pc.z - pa.z) - (pb.z - pa.z) * (pc.y - pa.y);
- n.y = (pb.z - pa.z) * (pc.x - pa.x) - (pb.x - pa.x) * (pc.z - pa.z);
- n.z = (pb.x - pa.x) * (pc.y - pa.y) - (pb.y - pa.y) * (pc.x - pa.x);
- Normalise(&n);
- d = - n.x * pa.x - n.y * pa.y - n.z * pa.z;
-
- //Calculate the position on the line that intersects the plane
- denom = n.x * (p2.x - p1.x) + n.y * (p2.y - p1.y) + n.z * (p2.z - p1.z);
- if (fabs(denom) < 0.0000001) // Line and plane don't intersect
- return 0;
- mu = - (d + n.x * p1.x + n.y * p1.y + n.z * p1.z) / denom;
- p->x = p1.x + mu * (p2.x - p1.x);
- p->y = p1.y + mu * (p2.y - p1.y);
- p->z = p1.z + mu * (p2.z - p1.z);
- if (mu < 0 || mu > 1) // Intersection not along line segment
- return 0;
-
- if (!PointInTriangle( p, n, &pa, &pb, &pc)) {
- return 0;
- }
-
- return 1;
-}
-
-float LineFacetd(XYZ p1, XYZ p2, XYZ pa, XYZ pb, XYZ pc, XYZ n, XYZ *p)
-{
- static float d;
- static float denom, mu;
-
- //Calculate the parameters for the plane
- d = - n.x * pa.x - n.y * pa.y - n.z * pa.z;
-
- //Calculate the position on the line that intersects the plane
- denom = n.x * (p2.x - p1.x) + n.y * (p2.y - p1.y) + n.z * (p2.z - p1.z);
- if (fabs(denom) < 0.0000001) // Line and plane don't intersect
- return 0;
- mu = - (d + n.x * p1.x + n.y * p1.y + n.z * p1.z) / denom;
- p->x = p1.x + mu * (p2.x - p1.x);
- p->y = p1.y + mu * (p2.y - p1.y);
- p->z = p1.z + mu * (p2.z - p1.z);
- if (mu < 0 || mu > 1) // Intersection not along line segment
- return 0;
-
- if (!PointInTriangle( p, n, &pa, &pb, &pc)) {
- return 0;
- }
- return 1;
-}
-
-float LineFacetd(XYZ *p1, XYZ *p2, XYZ *pa, XYZ *pb, XYZ *pc, XYZ *p)
-{
- static float d;
- static float denom, mu;
- static XYZ n;
-
- //Calculate the parameters for the plane
- n.x = (pb->y - pa->y) * (pc->z - pa->z) - (pb->z - pa->z) * (pc->y - pa->y);
- n.y = (pb->z - pa->z) * (pc->x - pa->x) - (pb->x - pa->x) * (pc->z - pa->z);
- n.z = (pb->x - pa->x) * (pc->y - pa->y) - (pb->y - pa->y) * (pc->x - pa->x);
- Normalise(&n);
- d = - n.x * pa->x - n.y * pa->y - n.z * pa->z;
-
-
- //Calculate the position on the line that intersects the plane
- denom = n.x * (p2->x - p1->x) + n.y * (p2->y - p1->y) + n.z * (p2->z - p1->z);
- if (fabs(denom) < 0.0000001) // Line and plane don't intersect
- return 0;
- mu = - (d + n.x * p1->x + n.y * p1->y + n.z * p1->z) / denom;
- p->x = p1->x + mu * (p2->x - p1->x);
- p->y = p1->y + mu * (p2->y - p1->y);
- p->z = p1->z + mu * (p2->z - p1->z);
- if (mu < 0 || mu > 1) // Intersection not along line segment
- return 0;
-
- if (!PointInTriangle( p, n, pa, pb, pc)) {
- return 0;
- }
- return 1;
-}
-
-float LineFacetd(XYZ *p1, XYZ *p2, XYZ *pa, XYZ *pb, XYZ *pc, XYZ *n, XYZ *p)
-{
- static float d;
- static float denom, mu;
-
- //Calculate the parameters for the plane
- d = - n->x * pa->x - n->y * pa->y - n->z * pa->z;
-
- //Calculate the position on the line that intersects the plane
- denom = n->x * (p2->x - p1->x) + n->y * (p2->y - p1->y) + n->z * (p2->z - p1->z);
- if (fabs(denom) < 0.0000001) // Line and plane don't intersect
- return 0;
- mu = - (d + n->x * p1->x + n->y * p1->y + n->z * p1->z) / denom;
- p->x = p1->x + mu * (p2->x - p1->x);
- p->y = p1->y + mu * (p2->y - p1->y);
- p->z = p1->z + mu * (p2->z - p1->z);
- if (mu < 0 || mu > 1) // Intersection not along line segment
- return 0;
-
- if (!PointInTriangle( p, *n, pa, pb, pc)) {
- return 0;
- }
- return 1;
-}
-
-
+++ /dev/null
-/*
-Copyright (C) 2003, 2010 - Wolfire Games
-Copyright (C) 2010-2016 - Lugaru contributors (see AUTHORS file)
-
-This file is part of Lugaru.
-
-Lugaru is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2 of the License, or
-(at your option) any later version.
-
-Lugaru is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with Lugaru. If not, see <http://www.gnu.org/licenses/>.
-*/
-
-#ifndef _QUATERNIONS_HPP_
-#define _QUATERNIONS_HPP_
-
-#include "PhysicsMath.hpp"
-#include "Graphic/gamegl.hpp"
-
-#include <math.h>
-
-/**> Quaternion Structures <**/
-#define PI 3.14159265355555897932384626
-#define RADIANS 0
-#define DEGREES 1
-#define deg2rad .0174532925
-
-//using namespace std;
-typedef float Matrix_t [4][4];
-struct euler {
- float x, y, z;
-};
-struct angle_axis {
- float x, y, z, angle;
-};
-struct quaternion {
- float x, y, z, w;
-};
-
-class XYZ
-{
-public:
- float x;
- float y;
- float z;
- XYZ() : x(0.0f), y(0.0f), z(0.0f) {}
- inline XYZ operator+(XYZ add);
- inline XYZ operator-(XYZ add);
- inline XYZ operator*(float add);
- inline XYZ operator*(XYZ add);
- inline XYZ operator/(float add);
- inline void operator+=(XYZ add);
- inline void operator-=(XYZ add);
- inline void operator*=(float add);
- inline void operator*=(XYZ add);
- inline void operator/=(float add);
- inline void operator=(float add);
- inline void vec(Vector add);
- inline bool operator==(XYZ add);
-};
-
-/*********************> Quaternion Function definition <********/
-quaternion To_Quat(int Degree_Flag, euler Euler);
-quaternion To_Quat(angle_axis Ang_Ax);
-quaternion To_Quat(Matrix_t m);
-angle_axis Quat_2_AA(quaternion Quat);
-void Quat_2_Matrix(quaternion Quat, Matrix_t m);
-quaternion Normalize(quaternion Quat);
-quaternion Quat_Mult(quaternion q1, quaternion q2);
-quaternion QNormalize(quaternion Quat);
-XYZ Quat2Vector(quaternion Quat);
-
-inline void CrossProduct(XYZ *P, XYZ *Q, XYZ *V);
-inline void CrossProduct(XYZ P, XYZ Q, XYZ *V);
-inline void Normalise(XYZ *vectory);
-inline float normaldotproduct(XYZ point1, XYZ point2);
-inline float fast_sqrt (register float arg);
-bool PointInTriangle(XYZ *p, XYZ normal, XYZ *p1, XYZ *p2, XYZ *p3);
-bool LineFacet(XYZ p1, XYZ p2, XYZ pa, XYZ pb, XYZ pc, XYZ *p);
-float LineFacetd(XYZ p1, XYZ p2, XYZ pa, XYZ pb, XYZ pc, XYZ *p);
-float LineFacetd(XYZ p1, XYZ p2, XYZ pa, XYZ pb, XYZ pc, XYZ n, XYZ *p);
-float LineFacetd(XYZ *p1, XYZ *p2, XYZ *pa, XYZ *pb, XYZ *pc, XYZ *n, XYZ *p);
-float LineFacetd(XYZ *p1, XYZ *p2, XYZ *pa, XYZ *pb, XYZ *pc, XYZ *p);
-bool PointInTriangle(Vector *p, Vector normal, float p11, float p12, float p13, float p21, float p22, float p23, float p31, float p32, float p33);
-bool LineFacet(Vector p1, Vector p2, Vector pa, Vector pb, Vector pc, Vector *p);
-inline void ReflectVector(XYZ *vel, const XYZ *n);
-inline void ReflectVector(XYZ *vel, const XYZ &n);
-inline XYZ DoRotation(XYZ thePoint, float xang, float yang, float zang);
-inline XYZ DoRotationRadian(XYZ thePoint, float xang, float yang, float zang);
-inline float findDistance(XYZ *point1, XYZ *point2);
-inline float findLength(XYZ *point1);
-inline float findLengthfast(XYZ *point1);
-inline float distsq(XYZ *point1, XYZ *point2);
-inline float distsq(XYZ point1, XYZ point2);
-inline float distsqflat(XYZ *point1, XYZ *point2);
-inline float dotproduct(const XYZ *point1, const XYZ *point2);
-bool sphere_line_intersection (
- float x1, float y1 , float z1,
- float x2, float y2 , float z2,
- float x3, float y3 , float z3, float r );
-bool sphere_line_intersection (
- XYZ *p1, XYZ *p2, XYZ *p3, float *r );
-inline bool DistancePointLine( XYZ *Point, XYZ *LineStart, XYZ *LineEnd, float *Distance, XYZ *Intersection );
-
-
-inline void Normalise(XYZ *vectory)
-{
- static float d;
- d = fast_sqrt(vectory->x * vectory->x + vectory->y * vectory->y + vectory->z * vectory->z);
- if (d == 0) {
- return;
- }
- vectory->x /= d;
- vectory->y /= d;
- vectory->z /= d;
-}
-
-inline XYZ XYZ::operator+(XYZ add)
-{
- static XYZ ne;
- ne = add;
- ne.x += x;
- ne.y += y;
- ne.z += z;
- return ne;
-}
-
-inline XYZ XYZ::operator-(XYZ add)
-{
- static XYZ ne;
- ne = add;
- ne.x = x - ne.x;
- ne.y = y - ne.y;
- ne.z = z - ne.z;
- return ne;
-}
-
-inline XYZ XYZ::operator*(float add)
-{
- static XYZ ne;
- ne.x = x * add;
- ne.y = y * add;
- ne.z = z * add;
- return ne;
-}
-
-inline XYZ XYZ::operator*(XYZ add)
-{
- static XYZ ne;
- ne.x = x * add.x;
- ne.y = y * add.y;
- ne.z = z * add.z;
- return ne;
-}
-
-inline XYZ XYZ::operator/(float add)
-{
- static XYZ ne;
- ne.x = x / add;
- ne.y = y / add;
- ne.z = z / add;
- return ne;
-}
-
-inline void XYZ::operator+=(XYZ add)
-{
- x += add.x;
- y += add.y;
- z += add.z;
-}
-
-inline void XYZ::operator-=(XYZ add)
-{
- x = x - add.x;
- y = y - add.y;
- z = z - add.z;
-}
-
-inline void XYZ::operator*=(float add)
-{
- x = x * add;
- y = y * add;
- z = z * add;
-}
-
-inline void XYZ::operator*=(XYZ add)
-{
- x = x * add.x;
- y = y * add.y;
- z = z * add.z;
-}
-
-inline void XYZ::operator/=(float add)
-{
- x = x / add;
- y = y / add;
- z = z / add;
-}
-
-inline void XYZ::operator=(float add)
-{
- x = add;
- y = add;
- z = add;
-}
-
-inline void XYZ::vec(Vector add)
-{
- x = add.x;
- y = add.y;
- z = add.z;
-}
-
-inline bool XYZ::operator==(XYZ add)
-{
- if (x == add.x && y == add.y && z == add.z)
- return 1;
- return 0;
-}
-
-inline void CrossProduct(XYZ *P, XYZ *Q, XYZ *V)
-{
- V->x = P->y * Q->z - P->z * Q->y;
- V->y = P->z * Q->x - P->x * Q->z;
- V->z = P->x * Q->y - P->y * Q->x;
-}
-
-inline void CrossProduct(XYZ P, XYZ Q, XYZ *V)
-{
- V->x = P.y * Q.z - P.z * Q.y;
- V->y = P.z * Q.x - P.x * Q.z;
- V->z = P.x * Q.y - P.y * Q.x;
-}
-
-inline float fast_sqrt (register float arg)
-{
- return sqrtf(arg);
-}
-
-inline float normaldotproduct(XYZ point1, XYZ point2)
-{
- static GLfloat returnvalue;
- Normalise(&point1);
- Normalise(&point2);
- returnvalue = (point1.x * point2.x + point1.y * point2.y + point1.z * point2.z);
- return returnvalue;
-}
-
-inline void ReflectVector(XYZ *vel, const XYZ *n)
-{
- ReflectVector(vel, *n);
-}
-
-inline void ReflectVector(XYZ *vel, const XYZ &n)
-{
- static XYZ vn;
- static XYZ vt;
- static float dotprod;
-
- dotprod = dotproduct(&n, vel);
- vn.x = n.x * dotprod;
- vn.y = n.y * dotprod;
- vn.z = n.z * dotprod;
-
- vt.x = vel->x - vn.x;
- vt.y = vel->y - vn.y;
- vt.z = vel->z - vn.z;
-
- vel->x = vt.x - vn.x;
- vel->y = vt.y - vn.y;
- vel->z = vt.z - vn.z;
-}
-
-inline float dotproduct(const XYZ *point1, const XYZ *point2)
-{
- static GLfloat returnvalue;
- returnvalue = (point1->x * point2->x + point1->y * point2->y + point1->z * point2->z);
- return returnvalue;
-}
-
-inline float findDistance(XYZ *point1, XYZ *point2)
-{
- return(fast_sqrt((point1->x - point2->x) * (point1->x - point2->x) + (point1->y - point2->y) * (point1->y - point2->y) + (point1->z - point2->z) * (point1->z - point2->z)));
-}
-
-inline float findLength(XYZ *point1)
-{
- return(fast_sqrt((point1->x) * (point1->x) + (point1->y) * (point1->y) + (point1->z) * (point1->z)));
-}
-
-
-inline float findLengthfast(XYZ *point1)
-{
- return((point1->x) * (point1->x) + (point1->y) * (point1->y) + (point1->z) * (point1->z));
-}
-
-inline float distsq(XYZ *point1, XYZ *point2)
-{
- return((point1->x - point2->x) * (point1->x - point2->x) + (point1->y - point2->y) * (point1->y - point2->y) + (point1->z - point2->z) * (point1->z - point2->z));
-}
-
-inline float distsq(XYZ point1, XYZ point2)
-{
- return((point1.x - point2.x) * (point1.x - point2.x) + (point1.y - point2.y) * (point1.y - point2.y) + (point1.z - point2.z) * (point1.z - point2.z));
-}
-
-inline float distsqflat(XYZ *point1, XYZ *point2)
-{
- return((point1->x - point2->x) * (point1->x - point2->x) + (point1->z - point2->z) * (point1->z - point2->z));
-}
-
-inline XYZ DoRotation(XYZ thePoint, float xang, float yang, float zang)
-{
- static XYZ newpoint;
- if (xang) {
- xang *= 6.283185f;
- xang /= 360;
- }
- if (yang) {
- yang *= 6.283185f;
- yang /= 360;
- }
- if (zang) {
- zang *= 6.283185f;
- zang /= 360;
- }
-
-
- if (yang) {
- newpoint.z = thePoint.z * cosf(yang) - thePoint.x * sinf(yang);
- newpoint.x = thePoint.z * sinf(yang) + thePoint.x * cosf(yang);
- thePoint.z = newpoint.z;
- thePoint.x = newpoint.x;
- }
-
- if (zang) {
- newpoint.x = thePoint.x * cosf(zang) - thePoint.y * sinf(zang);
- newpoint.y = thePoint.y * cosf(zang) + thePoint.x * sinf(zang);
- thePoint.x = newpoint.x;
- thePoint.y = newpoint.y;
- }
-
- if (xang) {
- newpoint.y = thePoint.y * cosf(xang) - thePoint.z * sinf(xang);
- newpoint.z = thePoint.y * sinf(xang) + thePoint.z * cosf(xang);
- thePoint.z = newpoint.z;
- thePoint.y = newpoint.y;
- }
-
- return thePoint;
-}
-
-inline float square( float f )
-{
- return (f * f) ;
-}
-
-inline bool sphere_line_intersection (
- float x1, float y1 , float z1,
- float x2, float y2 , float z2,
- float x3, float y3 , float z3, float r )
-{
-
- // x1,y1,z1 P1 coordinates (point of line)
- // x2,y2,z2 P2 coordinates (point of line)
- // x3,y3,z3, r P3 coordinates and radius (sphere)
- // x,y,z intersection coordinates
- //
- // This function returns a pointer array which first index indicates
- // the number of intersection point, followed by coordinate pairs.
-
- //~ static float x , y , z;
- static float a, b, c, /*mu,*/ i ;
-
- if (x1 > x3 + r && x2 > x3 + r) return(0);
- if (x1 < x3 - r && x2 < x3 - r) return(0);
- if (y1 > y3 + r && y2 > y3 + r) return(0);
- if (y1 < y3 - r && y2 < y3 - r) return(0);
- if (z1 > z3 + r && z2 > z3 + r) return(0);
- if (z1 < z3 - r && z2 < z3 - r) return(0);
- a = square(x2 - x1) + square(y2 - y1) + square(z2 - z1);
- b = 2 * ( (x2 - x1) * (x1 - x3)
- + (y2 - y1) * (y1 - y3)
- + (z2 - z1) * (z1 - z3) ) ;
- c = square(x3) + square(y3) +
- square(z3) + square(x1) +
- square(y1) + square(z1) -
- 2 * ( x3 * x1 + y3 * y1 + z3 * z1 ) - square(r) ;
- i = b * b - 4 * a * c ;
-
- if ( i < 0.0 ) {
- // no intersection
- return(0);
- }
- return(1);
-}
-
-inline bool sphere_line_intersection (
- XYZ *p1, XYZ *p2, XYZ *p3, float *r )
-{
-
- // x1,p1->y,p1->z P1 coordinates (point of line)
- // p2->x,p2->y,p2->z P2 coordinates (point of line)
- // p3->x,p3->y,p3->z, r P3 coordinates and radius (sphere)
- // x,y,z intersection coordinates
- //
- // This function returns a pointer array which first index indicates
- // the number of intersection point, followed by coordinate pairs.
-
- //~ static float x , y , z;
- static float a, b, c, /*mu,*/ i ;
-
- if (p1->x > p3->x + *r && p2->x > p3->x + *r) return(0);
- if (p1->x < p3->x - *r && p2->x < p3->x - *r) return(0);
- if (p1->y > p3->y + *r && p2->y > p3->y + *r) return(0);
- if (p1->y < p3->y - *r && p2->y < p3->y - *r) return(0);
- if (p1->z > p3->z + *r && p2->z > p3->z + *r) return(0);
- if (p1->z < p3->z - *r && p2->z < p3->z - *r) return(0);
- a = square(p2->x - p1->x) + square(p2->y - p1->y) + square(p2->z - p1->z);
- b = 2 * ( (p2->x - p1->x) * (p1->x - p3->x)
- + (p2->y - p1->y) * (p1->y - p3->y)
- + (p2->z - p1->z) * (p1->z - p3->z) ) ;
- c = square(p3->x) + square(p3->y) +
- square(p3->z) + square(p1->x) +
- square(p1->y) + square(p1->z) -
- 2 * ( p3->x * p1->x + p3->y * p1->y + p3->z * p1->z ) - square(*r) ;
- i = b * b - 4 * a * c ;
-
- if ( i < 0.0 ) {
- // no intersection
- return(0);
- }
- return(1);
-}
-
-inline XYZ DoRotationRadian(XYZ thePoint, float xang, float yang, float zang)
-{
- static XYZ newpoint;
- static XYZ oldpoint;
-
- oldpoint = thePoint;
-
- if (yang != 0) {
- newpoint.z = oldpoint.z * cosf(yang) - oldpoint.x * sinf(yang);
- newpoint.x = oldpoint.z * sinf(yang) + oldpoint.x * cosf(yang);
- oldpoint.z = newpoint.z;
- oldpoint.x = newpoint.x;
- }
-
- if (zang != 0) {
- newpoint.x = oldpoint.x * cosf(zang) - oldpoint.y * sinf(zang);
- newpoint.y = oldpoint.y * cosf(zang) + oldpoint.x * sinf(zang);
- oldpoint.x = newpoint.x;
- oldpoint.y = newpoint.y;
- }
-
- if (xang != 0) {
- newpoint.y = oldpoint.y * cosf(xang) - oldpoint.z * sinf(xang);
- newpoint.z = oldpoint.y * sinf(xang) + oldpoint.z * cosf(xang);
- oldpoint.z = newpoint.z;
- oldpoint.y = newpoint.y;
- }
-
- return oldpoint;
-
-}
-
-inline bool DistancePointLine( XYZ *Point, XYZ *LineStart, XYZ *LineEnd, float *Distance, XYZ *Intersection )
-{
- float LineMag;
- float U;
-
- LineMag = findDistance( LineEnd, LineStart );
-
- U = ( ( ( Point->x - LineStart->x ) * ( LineEnd->x - LineStart->x ) ) +
- ( ( Point->y - LineStart->y ) * ( LineEnd->y - LineStart->y ) ) +
- ( ( Point->z - LineStart->z ) * ( LineEnd->z - LineStart->z ) ) ) /
- ( LineMag * LineMag );
-
- if ( U < 0.0f || U > 1.0f )
- return 0; // closest point does not fall within the line segment
-
- Intersection->x = LineStart->x + U * ( LineEnd->x - LineStart->x );
- Intersection->y = LineStart->y + U * ( LineEnd->y - LineStart->y );
- Intersection->z = LineStart->z + U * ( LineEnd->z - LineStart->z );
-
- *Distance = findDistance( Point, Intersection );
-
- return 1;
-}
-
-#endif
--- /dev/null
+/*
+Copyright (C) 2003, 2010 - Wolfire Games
+Copyright (C) 2010-2016 - Lugaru contributors (see AUTHORS file)
+
+This file is part of Lugaru.
+
+Lugaru is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+Lugaru is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with Lugaru. If not, see <http://www.gnu.org/licenses/>.
+*/
+
+#include "Math/XYZ.hpp"
+
+bool PointInTriangle(XYZ *p, XYZ normal, XYZ *p1, XYZ *p2, XYZ *p3)
+{
+ static float u0, u1, u2;
+ static float v0, v1, v2;
+ static float a, b;
+ static float max;
+ static int i, j;
+ static bool bInter = 0;
+ static float pointv[3];
+ static float p1v[3];
+ static float p2v[3];
+ static float p3v[3];
+ static float normalv[3];
+
+ bInter = 0;
+
+ pointv[0] = p->x;
+ pointv[1] = p->y;
+ pointv[2] = p->z;
+
+
+ p1v[0] = p1->x;
+ p1v[1] = p1->y;
+ p1v[2] = p1->z;
+
+ p2v[0] = p2->x;
+ p2v[1] = p2->y;
+ p2v[2] = p2->z;
+
+ p3v[0] = p3->x;
+ p3v[1] = p3->y;
+ p3v[2] = p3->z;
+
+ normalv[0] = normal.x;
+ normalv[1] = normal.y;
+ normalv[2] = normal.z;
+
+#define ABS(X) (((X)<0.f)?-(X):(X) )
+#define MAX(A, B) (((A)<(B))?(B):(A))
+ max = MAX(MAX(ABS(normalv[0]), ABS(normalv[1])), ABS(normalv[2]));
+#undef MAX
+ if (max == ABS(normalv[0])) {
+ i = 1; // y, z
+ j = 2;
+ }
+ if (max == ABS(normalv[1])) {
+ i = 0; // x, z
+ j = 2;
+ }
+ if (max == ABS(normalv[2])) {
+ i = 0; // x, y
+ j = 1;
+ }
+#undef ABS
+
+ u0 = pointv[i] - p1v[i];
+ v0 = pointv[j] - p1v[j];
+ u1 = p2v[i] - p1v[i];
+ v1 = p2v[j] - p1v[j];
+ u2 = p3v[i] - p1v[i];
+ v2 = p3v[j] - p1v[j];
+
+ if (u1 > -1.0e-05f && u1 < 1.0e-05f) { // == 0.0f)
+ b = u0 / u2;
+ if (0.0f <= b && b <= 1.0f) {
+ a = (v0 - b * v2) / v1;
+ if ((a >= 0.0f) && (( a + b ) <= 1.0f))
+ bInter = 1;
+ }
+ } else {
+ b = (v0 * u1 - u0 * v1) / (v2 * u1 - u2 * v1);
+ if (0.0f <= b && b <= 1.0f) {
+ a = (u0 - b * u2) / u1;
+ if ((a >= 0.0f) && (( a + b ) <= 1.0f ))
+ bInter = 1;
+ }
+ }
+
+ return bInter;
+}
+
+bool LineFacet(XYZ p1, XYZ p2, XYZ pa, XYZ pb, XYZ pc, XYZ *p)
+{
+ static float d;
+ static float denom, mu;
+ static XYZ n;
+
+ //Calculate the parameters for the plane
+ n.x = (pb.y - pa.y) * (pc.z - pa.z) - (pb.z - pa.z) * (pc.y - pa.y);
+ n.y = (pb.z - pa.z) * (pc.x - pa.x) - (pb.x - pa.x) * (pc.z - pa.z);
+ n.z = (pb.x - pa.x) * (pc.y - pa.y) - (pb.y - pa.y) * (pc.x - pa.x);
+ Normalise(&n);
+ d = - n.x * pa.x - n.y * pa.y - n.z * pa.z;
+
+ //Calculate the position on the line that intersects the plane
+ denom = n.x * (p2.x - p1.x) + n.y * (p2.y - p1.y) + n.z * (p2.z - p1.z);
+ if (fabs(denom) < 0.0000001) // Line and plane don't intersect
+ return 0;
+ mu = - (d + n.x * p1.x + n.y * p1.y + n.z * p1.z) / denom;
+ p->x = p1.x + mu * (p2.x - p1.x);
+ p->y = p1.y + mu * (p2.y - p1.y);
+ p->z = p1.z + mu * (p2.z - p1.z);
+ if (mu < 0 || mu > 1) // Intersection not along line segment
+ return 0;
+
+ if (!PointInTriangle( p, n, &pa, &pb, &pc)) {
+ return 0;
+ }
+
+ return 1;
+}
+
+float LineFacetd(XYZ p1, XYZ p2, XYZ pa, XYZ pb, XYZ pc, XYZ *p)
+{
+ static float d;
+ static float denom, mu;
+ static XYZ n;
+
+ //Calculate the parameters for the plane
+ n.x = (pb.y - pa.y) * (pc.z - pa.z) - (pb.z - pa.z) * (pc.y - pa.y);
+ n.y = (pb.z - pa.z) * (pc.x - pa.x) - (pb.x - pa.x) * (pc.z - pa.z);
+ n.z = (pb.x - pa.x) * (pc.y - pa.y) - (pb.y - pa.y) * (pc.x - pa.x);
+ Normalise(&n);
+ d = - n.x * pa.x - n.y * pa.y - n.z * pa.z;
+
+ //Calculate the position on the line that intersects the plane
+ denom = n.x * (p2.x - p1.x) + n.y * (p2.y - p1.y) + n.z * (p2.z - p1.z);
+ if (fabs(denom) < 0.0000001) // Line and plane don't intersect
+ return 0;
+ mu = - (d + n.x * p1.x + n.y * p1.y + n.z * p1.z) / denom;
+ p->x = p1.x + mu * (p2.x - p1.x);
+ p->y = p1.y + mu * (p2.y - p1.y);
+ p->z = p1.z + mu * (p2.z - p1.z);
+ if (mu < 0 || mu > 1) // Intersection not along line segment
+ return 0;
+
+ if (!PointInTriangle( p, n, &pa, &pb, &pc)) {
+ return 0;
+ }
+
+ return 1;
+}
+
+float LineFacetd(XYZ p1, XYZ p2, XYZ pa, XYZ pb, XYZ pc, XYZ n, XYZ *p)
+{
+ static float d;
+ static float denom, mu;
+
+ //Calculate the parameters for the plane
+ d = - n.x * pa.x - n.y * pa.y - n.z * pa.z;
+
+ //Calculate the position on the line that intersects the plane
+ denom = n.x * (p2.x - p1.x) + n.y * (p2.y - p1.y) + n.z * (p2.z - p1.z);
+ if (fabs(denom) < 0.0000001) // Line and plane don't intersect
+ return 0;
+ mu = - (d + n.x * p1.x + n.y * p1.y + n.z * p1.z) / denom;
+ p->x = p1.x + mu * (p2.x - p1.x);
+ p->y = p1.y + mu * (p2.y - p1.y);
+ p->z = p1.z + mu * (p2.z - p1.z);
+ if (mu < 0 || mu > 1) // Intersection not along line segment
+ return 0;
+
+ if (!PointInTriangle( p, n, &pa, &pb, &pc)) {
+ return 0;
+ }
+ return 1;
+}
+
+float LineFacetd(XYZ *p1, XYZ *p2, XYZ *pa, XYZ *pb, XYZ *pc, XYZ *p)
+{
+ static float d;
+ static float denom, mu;
+ static XYZ n;
+
+ //Calculate the parameters for the plane
+ n.x = (pb->y - pa->y) * (pc->z - pa->z) - (pb->z - pa->z) * (pc->y - pa->y);
+ n.y = (pb->z - pa->z) * (pc->x - pa->x) - (pb->x - pa->x) * (pc->z - pa->z);
+ n.z = (pb->x - pa->x) * (pc->y - pa->y) - (pb->y - pa->y) * (pc->x - pa->x);
+ Normalise(&n);
+ d = - n.x * pa->x - n.y * pa->y - n.z * pa->z;
+
+
+ //Calculate the position on the line that intersects the plane
+ denom = n.x * (p2->x - p1->x) + n.y * (p2->y - p1->y) + n.z * (p2->z - p1->z);
+ if (fabs(denom) < 0.0000001) // Line and plane don't intersect
+ return 0;
+ mu = - (d + n.x * p1->x + n.y * p1->y + n.z * p1->z) / denom;
+ p->x = p1->x + mu * (p2->x - p1->x);
+ p->y = p1->y + mu * (p2->y - p1->y);
+ p->z = p1->z + mu * (p2->z - p1->z);
+ if (mu < 0 || mu > 1) // Intersection not along line segment
+ return 0;
+
+ if (!PointInTriangle( p, n, pa, pb, pc)) {
+ return 0;
+ }
+ return 1;
+}
+
+float LineFacetd(XYZ *p1, XYZ *p2, XYZ *pa, XYZ *pb, XYZ *pc, XYZ *n, XYZ *p)
+{
+ static float d;
+ static float denom, mu;
+
+ //Calculate the parameters for the plane
+ d = - n->x * pa->x - n->y * pa->y - n->z * pa->z;
+
+ //Calculate the position on the line that intersects the plane
+ denom = n->x * (p2->x - p1->x) + n->y * (p2->y - p1->y) + n->z * (p2->z - p1->z);
+ if (fabs(denom) < 0.0000001) // Line and plane don't intersect
+ return 0;
+ mu = - (d + n->x * p1->x + n->y * p1->y + n->z * p1->z) / denom;
+ p->x = p1->x + mu * (p2->x - p1->x);
+ p->y = p1->y + mu * (p2->y - p1->y);
+ p->z = p1->z + mu * (p2->z - p1->z);
+ if (mu < 0 || mu > 1) // Intersection not along line segment
+ return 0;
+
+ if (!PointInTriangle( p, *n, pa, pb, pc)) {
+ return 0;
+ }
+ return 1;
+}
+
+
--- /dev/null
+/*
+Copyright (C) 2003, 2010 - Wolfire Games
+Copyright (C) 2010-2016 - Lugaru contributors (see AUTHORS file)
+
+This file is part of Lugaru.
+
+Lugaru is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+Lugaru is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with Lugaru. If not, see <http://www.gnu.org/licenses/>.
+*/
+
+#ifndef _QUATERNIONS_HPP_
+#define _QUATERNIONS_HPP_
+
+#include "Graphic/gamegl.hpp"
+
+#include <math.h>
+
+class XYZ
+{
+public:
+ float x;
+ float y;
+ float z;
+ XYZ() : x(0.0f), y(0.0f), z(0.0f) {}
+ inline XYZ operator+(XYZ add);
+ inline XYZ operator-(XYZ add);
+ inline XYZ operator*(float add);
+ inline XYZ operator*(XYZ add);
+ inline XYZ operator/(float add);
+ inline void operator+=(XYZ add);
+ inline void operator-=(XYZ add);
+ inline void operator*=(float add);
+ inline void operator*=(XYZ add);
+ inline void operator/=(float add);
+ inline void operator=(float add);
+ inline bool operator==(XYZ add);
+};
+
+inline void CrossProduct(XYZ *P, XYZ *Q, XYZ *V);
+inline void CrossProduct(XYZ P, XYZ Q, XYZ *V);
+inline void Normalise(XYZ *vectory);
+inline float normaldotproduct(XYZ point1, XYZ point2);
+inline float fast_sqrt (register float arg);
+bool PointInTriangle(XYZ *p, XYZ normal, XYZ *p1, XYZ *p2, XYZ *p3);
+bool LineFacet(XYZ p1, XYZ p2, XYZ pa, XYZ pb, XYZ pc, XYZ *p);
+float LineFacetd(XYZ p1, XYZ p2, XYZ pa, XYZ pb, XYZ pc, XYZ *p);
+float LineFacetd(XYZ p1, XYZ p2, XYZ pa, XYZ pb, XYZ pc, XYZ n, XYZ *p);
+float LineFacetd(XYZ *p1, XYZ *p2, XYZ *pa, XYZ *pb, XYZ *pc, XYZ *n, XYZ *p);
+float LineFacetd(XYZ *p1, XYZ *p2, XYZ *pa, XYZ *pb, XYZ *pc, XYZ *p);
+inline void ReflectVector(XYZ *vel, const XYZ *n);
+inline void ReflectVector(XYZ *vel, const XYZ &n);
+inline XYZ DoRotation(XYZ thePoint, float xang, float yang, float zang);
+inline XYZ DoRotationRadian(XYZ thePoint, float xang, float yang, float zang);
+inline float findDistance(XYZ *point1, XYZ *point2);
+inline float findLength(XYZ *point1);
+inline float findLengthfast(XYZ *point1);
+inline float distsq(XYZ *point1, XYZ *point2);
+inline float distsq(XYZ point1, XYZ point2);
+inline float distsqflat(XYZ *point1, XYZ *point2);
+inline float dotproduct(const XYZ *point1, const XYZ *point2);
+bool sphere_line_intersection (
+ float x1, float y1 , float z1,
+ float x2, float y2 , float z2,
+ float x3, float y3 , float z3, float r );
+bool sphere_line_intersection (
+ XYZ *p1, XYZ *p2, XYZ *p3, float *r );
+inline bool DistancePointLine( XYZ *Point, XYZ *LineStart, XYZ *LineEnd, float *Distance, XYZ *Intersection );
+
+
+inline void Normalise(XYZ *vectory)
+{
+ static float d;
+ d = fast_sqrt(vectory->x * vectory->x + vectory->y * vectory->y + vectory->z * vectory->z);
+ if (d == 0) {
+ return;
+ }
+ vectory->x /= d;
+ vectory->y /= d;
+ vectory->z /= d;
+}
+
+inline XYZ XYZ::operator+(XYZ add)
+{
+ static XYZ ne;
+ ne = add;
+ ne.x += x;
+ ne.y += y;
+ ne.z += z;
+ return ne;
+}
+
+inline XYZ XYZ::operator-(XYZ add)
+{
+ static XYZ ne;
+ ne = add;
+ ne.x = x - ne.x;
+ ne.y = y - ne.y;
+ ne.z = z - ne.z;
+ return ne;
+}
+
+inline XYZ XYZ::operator*(float add)
+{
+ static XYZ ne;
+ ne.x = x * add;
+ ne.y = y * add;
+ ne.z = z * add;
+ return ne;
+}
+
+inline XYZ XYZ::operator*(XYZ add)
+{
+ static XYZ ne;
+ ne.x = x * add.x;
+ ne.y = y * add.y;
+ ne.z = z * add.z;
+ return ne;
+}
+
+inline XYZ XYZ::operator/(float add)
+{
+ static XYZ ne;
+ ne.x = x / add;
+ ne.y = y / add;
+ ne.z = z / add;
+ return ne;
+}
+
+inline void XYZ::operator+=(XYZ add)
+{
+ x += add.x;
+ y += add.y;
+ z += add.z;
+}
+
+inline void XYZ::operator-=(XYZ add)
+{
+ x = x - add.x;
+ y = y - add.y;
+ z = z - add.z;
+}
+
+inline void XYZ::operator*=(float add)
+{
+ x = x * add;
+ y = y * add;
+ z = z * add;
+}
+
+inline void XYZ::operator*=(XYZ add)
+{
+ x = x * add.x;
+ y = y * add.y;
+ z = z * add.z;
+}
+
+inline void XYZ::operator/=(float add)
+{
+ x = x / add;
+ y = y / add;
+ z = z / add;
+}
+
+inline void XYZ::operator=(float add)
+{
+ x = add;
+ y = add;
+ z = add;
+}
+
+inline bool XYZ::operator==(XYZ add)
+{
+ if (x == add.x && y == add.y && z == add.z)
+ return 1;
+ return 0;
+}
+
+inline void CrossProduct(XYZ *P, XYZ *Q, XYZ *V)
+{
+ V->x = P->y * Q->z - P->z * Q->y;
+ V->y = P->z * Q->x - P->x * Q->z;
+ V->z = P->x * Q->y - P->y * Q->x;
+}
+
+inline void CrossProduct(XYZ P, XYZ Q, XYZ *V)
+{
+ V->x = P.y * Q.z - P.z * Q.y;
+ V->y = P.z * Q.x - P.x * Q.z;
+ V->z = P.x * Q.y - P.y * Q.x;
+}
+
+inline float fast_sqrt (register float arg)
+{
+ return sqrtf(arg);
+}
+
+inline float normaldotproduct(XYZ point1, XYZ point2)
+{
+ static GLfloat returnvalue;
+ Normalise(&point1);
+ Normalise(&point2);
+ returnvalue = (point1.x * point2.x + point1.y * point2.y + point1.z * point2.z);
+ return returnvalue;
+}
+
+inline void ReflectVector(XYZ *vel, const XYZ *n)
+{
+ ReflectVector(vel, *n);
+}
+
+inline void ReflectVector(XYZ *vel, const XYZ &n)
+{
+ static XYZ vn;
+ static XYZ vt;
+ static float dotprod;
+
+ dotprod = dotproduct(&n, vel);
+ vn.x = n.x * dotprod;
+ vn.y = n.y * dotprod;
+ vn.z = n.z * dotprod;
+
+ vt.x = vel->x - vn.x;
+ vt.y = vel->y - vn.y;
+ vt.z = vel->z - vn.z;
+
+ vel->x = vt.x - vn.x;
+ vel->y = vt.y - vn.y;
+ vel->z = vt.z - vn.z;
+}
+
+inline float dotproduct(const XYZ *point1, const XYZ *point2)
+{
+ static GLfloat returnvalue;
+ returnvalue = (point1->x * point2->x + point1->y * point2->y + point1->z * point2->z);
+ return returnvalue;
+}
+
+inline float findDistance(XYZ *point1, XYZ *point2)
+{
+ return(fast_sqrt((point1->x - point2->x) * (point1->x - point2->x) + (point1->y - point2->y) * (point1->y - point2->y) + (point1->z - point2->z) * (point1->z - point2->z)));
+}
+
+inline float findLength(XYZ *point1)
+{
+ return(fast_sqrt((point1->x) * (point1->x) + (point1->y) * (point1->y) + (point1->z) * (point1->z)));
+}
+
+
+inline float findLengthfast(XYZ *point1)
+{
+ return((point1->x) * (point1->x) + (point1->y) * (point1->y) + (point1->z) * (point1->z));
+}
+
+inline float distsq(XYZ *point1, XYZ *point2)
+{
+ return((point1->x - point2->x) * (point1->x - point2->x) + (point1->y - point2->y) * (point1->y - point2->y) + (point1->z - point2->z) * (point1->z - point2->z));
+}
+
+inline float distsq(XYZ point1, XYZ point2)
+{
+ return((point1.x - point2.x) * (point1.x - point2.x) + (point1.y - point2.y) * (point1.y - point2.y) + (point1.z - point2.z) * (point1.z - point2.z));
+}
+
+inline float distsqflat(XYZ *point1, XYZ *point2)
+{
+ return((point1->x - point2->x) * (point1->x - point2->x) + (point1->z - point2->z) * (point1->z - point2->z));
+}
+
+inline XYZ DoRotation(XYZ thePoint, float xang, float yang, float zang)
+{
+ static XYZ newpoint;
+ if (xang) {
+ xang *= 6.283185f;
+ xang /= 360;
+ }
+ if (yang) {
+ yang *= 6.283185f;
+ yang /= 360;
+ }
+ if (zang) {
+ zang *= 6.283185f;
+ zang /= 360;
+ }
+
+
+ if (yang) {
+ newpoint.z = thePoint.z * cosf(yang) - thePoint.x * sinf(yang);
+ newpoint.x = thePoint.z * sinf(yang) + thePoint.x * cosf(yang);
+ thePoint.z = newpoint.z;
+ thePoint.x = newpoint.x;
+ }
+
+ if (zang) {
+ newpoint.x = thePoint.x * cosf(zang) - thePoint.y * sinf(zang);
+ newpoint.y = thePoint.y * cosf(zang) + thePoint.x * sinf(zang);
+ thePoint.x = newpoint.x;
+ thePoint.y = newpoint.y;
+ }
+
+ if (xang) {
+ newpoint.y = thePoint.y * cosf(xang) - thePoint.z * sinf(xang);
+ newpoint.z = thePoint.y * sinf(xang) + thePoint.z * cosf(xang);
+ thePoint.z = newpoint.z;
+ thePoint.y = newpoint.y;
+ }
+
+ return thePoint;
+}
+
+inline float square( float f )
+{
+ return (f * f) ;
+}
+
+inline bool sphere_line_intersection (
+ float x1, float y1 , float z1,
+ float x2, float y2 , float z2,
+ float x3, float y3 , float z3, float r )
+{
+
+ // x1,y1,z1 P1 coordinates (point of line)
+ // x2,y2,z2 P2 coordinates (point of line)
+ // x3,y3,z3, r P3 coordinates and radius (sphere)
+ // x,y,z intersection coordinates
+ //
+ // This function returns a pointer array which first index indicates
+ // the number of intersection point, followed by coordinate pairs.
+
+ //~ static float x , y , z;
+ static float a, b, c, /*mu,*/ i ;
+
+ if (x1 > x3 + r && x2 > x3 + r) return(0);
+ if (x1 < x3 - r && x2 < x3 - r) return(0);
+ if (y1 > y3 + r && y2 > y3 + r) return(0);
+ if (y1 < y3 - r && y2 < y3 - r) return(0);
+ if (z1 > z3 + r && z2 > z3 + r) return(0);
+ if (z1 < z3 - r && z2 < z3 - r) return(0);
+ a = square(x2 - x1) + square(y2 - y1) + square(z2 - z1);
+ b = 2 * ( (x2 - x1) * (x1 - x3)
+ + (y2 - y1) * (y1 - y3)
+ + (z2 - z1) * (z1 - z3) ) ;
+ c = square(x3) + square(y3) +
+ square(z3) + square(x1) +
+ square(y1) + square(z1) -
+ 2 * ( x3 * x1 + y3 * y1 + z3 * z1 ) - square(r) ;
+ i = b * b - 4 * a * c ;
+
+ if ( i < 0.0 ) {
+ // no intersection
+ return(0);
+ }
+ return(1);
+}
+
+inline bool sphere_line_intersection (
+ XYZ *p1, XYZ *p2, XYZ *p3, float *r )
+{
+
+ // x1,p1->y,p1->z P1 coordinates (point of line)
+ // p2->x,p2->y,p2->z P2 coordinates (point of line)
+ // p3->x,p3->y,p3->z, r P3 coordinates and radius (sphere)
+ // x,y,z intersection coordinates
+ //
+ // This function returns a pointer array which first index indicates
+ // the number of intersection point, followed by coordinate pairs.
+
+ //~ static float x , y , z;
+ static float a, b, c, /*mu,*/ i ;
+
+ if (p1->x > p3->x + *r && p2->x > p3->x + *r) return(0);
+ if (p1->x < p3->x - *r && p2->x < p3->x - *r) return(0);
+ if (p1->y > p3->y + *r && p2->y > p3->y + *r) return(0);
+ if (p1->y < p3->y - *r && p2->y < p3->y - *r) return(0);
+ if (p1->z > p3->z + *r && p2->z > p3->z + *r) return(0);
+ if (p1->z < p3->z - *r && p2->z < p3->z - *r) return(0);
+ a = square(p2->x - p1->x) + square(p2->y - p1->y) + square(p2->z - p1->z);
+ b = 2 * ( (p2->x - p1->x) * (p1->x - p3->x)
+ + (p2->y - p1->y) * (p1->y - p3->y)
+ + (p2->z - p1->z) * (p1->z - p3->z) ) ;
+ c = square(p3->x) + square(p3->y) +
+ square(p3->z) + square(p1->x) +
+ square(p1->y) + square(p1->z) -
+ 2 * ( p3->x * p1->x + p3->y * p1->y + p3->z * p1->z ) - square(*r) ;
+ i = b * b - 4 * a * c ;
+
+ if ( i < 0.0 ) {
+ // no intersection
+ return(0);
+ }
+ return(1);
+}
+
+inline XYZ DoRotationRadian(XYZ thePoint, float xang, float yang, float zang)
+{
+ static XYZ newpoint;
+ static XYZ oldpoint;
+
+ oldpoint = thePoint;
+
+ if (yang != 0) {
+ newpoint.z = oldpoint.z * cosf(yang) - oldpoint.x * sinf(yang);
+ newpoint.x = oldpoint.z * sinf(yang) + oldpoint.x * cosf(yang);
+ oldpoint.z = newpoint.z;
+ oldpoint.x = newpoint.x;
+ }
+
+ if (zang != 0) {
+ newpoint.x = oldpoint.x * cosf(zang) - oldpoint.y * sinf(zang);
+ newpoint.y = oldpoint.y * cosf(zang) + oldpoint.x * sinf(zang);
+ oldpoint.x = newpoint.x;
+ oldpoint.y = newpoint.y;
+ }
+
+ if (xang != 0) {
+ newpoint.y = oldpoint.y * cosf(xang) - oldpoint.z * sinf(xang);
+ newpoint.z = oldpoint.y * sinf(xang) + oldpoint.z * cosf(xang);
+ oldpoint.z = newpoint.z;
+ oldpoint.y = newpoint.y;
+ }
+
+ return oldpoint;
+
+}
+
+inline bool DistancePointLine( XYZ *Point, XYZ *LineStart, XYZ *LineEnd, float *Distance, XYZ *Intersection )
+{
+ float LineMag;
+ float U;
+
+ LineMag = findDistance( LineEnd, LineStart );
+
+ U = ( ( ( Point->x - LineStart->x ) * ( LineEnd->x - LineStart->x ) ) +
+ ( ( Point->y - LineStart->y ) * ( LineEnd->y - LineStart->y ) ) +
+ ( ( Point->z - LineStart->z ) * ( LineEnd->z - LineStart->z ) ) ) /
+ ( LineMag * LineMag );
+
+ if ( U < 0.0f || U > 1.0f )
+ return 0; // closest point does not fall within the line segment
+
+ Intersection->x = LineStart->x + U * ( LineEnd->x - LineStart->x );
+ Intersection->y = LineStart->y + U * ( LineEnd->y - LineStart->y );
+ Intersection->z = LineStart->z + U * ( LineEnd->z - LineStart->z );
+
+ *Distance = findDistance( Point, Intersection );
+
+ return 1;
+}
+
+#endif
#include "Graphic/Sprite.hpp"
#include "Graphic/Texture.hpp"
#include "Math/Frustum.hpp"
-#include "Math/Quaternions.hpp"
+#include "Math/XYZ.hpp"
#include "Utils/ImageIO.hpp"
#include <memory>
#include "Graphic/gamegl.hpp"
#include "Graphic/Models.hpp"
#include "Graphic/Sprite.hpp"
-#include "Math/Quaternions.hpp"
+#include "Math/XYZ.hpp"
#include "Objects/Weapons.hpp"
#include <cmath>
#include "Graphic/Models.hpp"
#include "Graphic/Sprite.hpp"
#include "Graphic/Texture.hpp"
-#include "Math/Quaternions.hpp"
+#include "Math/XYZ.hpp"
#include "Objects/Person.hpp"
#include <cmath>