1 /********************************************************************
3 * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE. *
4 * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS *
5 * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
6 * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. *
8 * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2002 *
9 * by the XIPHOPHORUS Company http://www.xiph.org/ *
11 ********************************************************************
13 function: LSP (also called LSF) conversion routines
14 last mod: $Id: lsp.c,v 1.24 2002/10/16 07:44:21 xiphmont Exp $
16 The LSP generation code is taken (with minimal modification and a
17 few bugfixes) from "On the Computation of the LSP Frequencies" by
18 Joseph Rothweiler (see http://www.rothweiler.us for contact info).
19 The paper is available at:
21 http://www.myown1.com/joe/lsf
23 ********************************************************************/
25 /* Note that the lpc-lsp conversion finds the roots of polynomial with
26 an iterative root polisher (CACM algorithm 283). It *is* possible
27 to confuse this algorithm into not converging; that should only
28 happen with absurdly closely spaced roots (very sharp peaks in the
29 LPC f response) which in turn should be impossible in our use of
30 the code. If this *does* happen anyway, it's a bug in the floor
31 finder; find the cause of the confusion (probably a single bin
32 spike or accidental near-float-limit resolution problems) and
44 /* three possible LSP to f curve functions; the exact computation
45 (float), a lookup based float implementation, and an integer
46 implementation. The float lookup is likely the optimal choice on
47 any machine with an FPU. The integer implementation is *not* fixed
48 point (due to the need for a large dynamic range and thus a
49 seperately tracked exponent) and thus much more complex than the
50 relatively simple float implementations. It's mostly for future
51 work on a fully fixed point implementation for processors like the
54 /* undefine both for the 'old' but more precise implementation */
59 #include "lookup.c" /* catch this in the build system; we #include for
60 compilers (like gcc) that can't inline across
63 /* side effect: changes *lsp to cosines of lsp */
64 void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
65 float amp,float ampoffset){
68 vorbis_fpu_control fpu;
70 vorbis_fpu_setround(&fpu);
71 for(i=0;i<m;i++)lsp[i]=vorbis_coslook(lsp[i]);
79 float w=vorbis_coslook(wdel*k);
90 /* odd order filter; slightly assymetric */
91 /* the last coefficient */
96 /* even order filter; still symmetric */
102 q=vorbis_fromdBlook(amp*
104 vorbis_invsq2explook(qexp+m)-
111 vorbis_fpu_restore(fpu);
117 #include "lookup.c" /* catch this in the build system; we #include for
118 compilers (like gcc) that can't inline across
121 static int MLOOP_1[64]={
122 0,10,11,11, 12,12,12,12, 13,13,13,13, 13,13,13,13,
123 14,14,14,14, 14,14,14,14, 14,14,14,14, 14,14,14,14,
124 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15,
125 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15,
128 static int MLOOP_2[64]={
129 0,4,5,5, 6,6,6,6, 7,7,7,7, 7,7,7,7,
130 8,8,8,8, 8,8,8,8, 8,8,8,8, 8,8,8,8,
131 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9,
132 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9,
135 static int MLOOP_3[8]={0,1,2,2,3,3,3,3};
138 /* side effect: changes *lsp to cosines of lsp */
139 void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
140 float amp,float ampoffset){
144 /* set up for using all int later */
146 int ampoffseti=rint(ampoffset*4096.f);
147 int ampi=rint(amp*16.f);
148 long *ilsp=alloca(m*sizeof(*ilsp));
149 for(i=0;i<m;i++)ilsp[i]=vorbis_coslook_i(lsp[i]/M_PI*65536.f+.5f);
154 unsigned long pi=46341; /* 2**-.5 in 0.16 */
155 unsigned long qi=46341;
157 long wi=vorbis_coslook_i(k*65536/ln);
159 qi*=labs(ilsp[0]-wi);
160 pi*=labs(ilsp[1]-wi);
163 if(!(shift=MLOOP_1[(pi|qi)>>25]))
164 if(!(shift=MLOOP_2[(pi|qi)>>19]))
165 shift=MLOOP_3[(pi|qi)>>16];
166 qi=(qi>>shift)*labs(ilsp[j-1]-wi);
167 pi=(pi>>shift)*labs(ilsp[j]-wi);
170 if(!(shift=MLOOP_1[(pi|qi)>>25]))
171 if(!(shift=MLOOP_2[(pi|qi)>>19]))
172 shift=MLOOP_3[(pi|qi)>>16];
174 /* pi,qi normalized collectively, both tracked using qexp */
177 /* odd order filter; slightly assymetric */
178 /* the last coefficient */
179 qi=(qi>>shift)*labs(ilsp[j-1]-wi);
183 if(!(shift=MLOOP_1[(pi|qi)>>25]))
184 if(!(shift=MLOOP_2[(pi|qi)>>19]))
185 shift=MLOOP_3[(pi|qi)>>16];
189 qexp+=shift-14*((m+1)>>1);
195 pi*=(1<<14)-((wi*wi)>>14);
199 /* even order filter; still symmetric */
201 /* p*=p(1-w), q*=q(1+w), let normalization drift because it isn't
202 worth tracking step by step */
219 /* we've let the normalization drift because it wasn't important;
220 however, for the lookup, things must be normalized again. We
221 need at most one right shift or a number of left shifts */
223 if(qi&0xffff0000){ /* checks for 1.xxxxxxxxxxxxxxxx */
226 while(qi && !(qi&0x8000)){ /* checks for 0.0xxxxxxxxxxxxxxx or less*/
230 amp=vorbis_fromdBlook_i(ampi* /* n.4 */
231 vorbis_invsqlook_i(qi,qexp)-
233 ampoffseti); /* 8.12[0] */
236 while(map[++i]==k)curve[i]*=amp;
242 /* old, nonoptimized but simple version for any poor sap who needs to
243 figure out what the hell this code does, or wants the other
244 fraction of a dB precision */
246 /* side effect: changes *lsp to cosines of lsp */
247 void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
248 float amp,float ampoffset){
251 for(i=0;i<m;i++)lsp[i]=2.f*cos(lsp[i]);
258 float w=2.f*cos(wdel*k);
264 /* odd order filter; slightly assymetric */
265 /* the last coefficient */
270 /* even order filter; still symmetric */
275 q=fromdB(amp/sqrt(p+q)-ampoffset);
278 while(map[++i]==k)curve[i]*=q;
285 static void cheby(float *g, int ord) {
289 for(i=2; i<= ord; i++) {
290 for(j=ord; j >= i; j--) {
297 static int comp(const void *a,const void *b){
298 return (*(float *)a<*(float *)b)-(*(float *)a>*(float *)b);
301 /* Newton-Raphson-Maehly actually functioned as a decent root finder,
302 but there are root sets for which it gets into limit cycles
303 (exacerbated by zero suppression) and fails. We can't afford to
304 fail, even if the failure is 1 in 100,000,000, so we now use
305 Laguerre and later polish with Newton-Raphson (which can then
308 #define EPSILON 10e-7
309 static int Laguerre_With_Deflation(float *a,int ord,float *r){
311 double lastdelta=0.f;
312 double *defl=alloca(sizeof(*defl)*(ord+1));
313 for(i=0;i<=ord;i++)defl[i]=a[i];
316 double new=0.f,delta;
320 double p=defl[m],pp=0.f,ppp=0.f,denom;
322 /* eval the polynomial and its first two derivatives */
326 p = new*p + defl[i-1];
329 /* Laguerre's method */
330 denom=(m-1) * ((m-1)*pp*pp - m*p*ppp);
332 return(-1); /* complex root! The LPC generator handed us a bad filter */
335 denom = pp + sqrt(denom);
336 if(denom<EPSILON)denom=EPSILON;
338 denom = pp - sqrt(denom);
339 if(denom>-(EPSILON))denom=-(EPSILON);
345 if(delta<0.f)delta*=-1;
347 if(fabs(delta/new)<10e-12)break;
353 /* forward deflation */
356 defl[i-1]+=new*defl[i];
364 /* for spit-and-polish only */
365 static int Newton_Raphson(float *a,int ord,float *r){
368 double *root=alloca(ord*sizeof(*root));
370 for(i=0; i<ord;i++) root[i] = r[i];
375 for(i=0; i<ord; i++) { /* Update each point. */
377 double rooti=root[i];
379 for(k=ord-1; k>= 0; k--) {
382 p = p * rooti + a[k];
390 if(count>40)return(-1);
395 /* Replaced the original bubble sort with a real sort. With your
396 help, we can eliminate the bubble sort in our lifetime. --Monty */
398 for(i=0; i<ord;i++) r[i] = root[i];
403 /* Convert lpc coefficients to lsp coefficients */
404 int vorbis_lpc_to_lsp(float *lpc,float *lsp,int m){
406 int g1_order,g2_order;
407 float *g1=alloca(sizeof(*g1)*(order2+1));
408 float *g2=alloca(sizeof(*g2)*(order2+1));
409 float *g1r=alloca(sizeof(*g1r)*(order2+1));
410 float *g2r=alloca(sizeof(*g2r)*(order2+1));
413 /* even and odd are slightly different base cases */
417 /* Compute the lengths of the x polynomials. */
418 /* Compute the first half of K & R F1 & F2 polynomials. */
419 /* Compute half of the symmetric and antisymmetric polynomials. */
420 /* Remove the roots at +1 and -1. */
423 for(i=1;i<=g1_order;i++) g1[g1_order-i] = lpc[i-1]+lpc[m-i];
425 for(i=1;i<=g2_order;i++) g2[g2_order-i] = lpc[i-1]-lpc[m-i];
427 if(g1_order>g2_order){
428 for(i=2; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+2];
430 for(i=1; i<=g1_order;i++) g1[g1_order-i] -= g1[g1_order-i+1];
431 for(i=1; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+1];
434 /* Convert into polynomials in cos(alpha) */
438 /* Find the roots of the 2 even polynomials.*/
439 if(Laguerre_With_Deflation(g1,g1_order,g1r) ||
440 Laguerre_With_Deflation(g2,g2_order,g2r))
443 Newton_Raphson(g1,g1_order,g1r); /* if it fails, it leaves g1r alone */
444 Newton_Raphson(g2,g2_order,g2r); /* if it fails, it leaves g2r alone */
446 qsort(g1r,g1_order,sizeof(*g1r),comp);
447 qsort(g2r,g2_order,sizeof(*g2r),comp);
449 for(i=0;i<g1_order;i++)
450 lsp[i*2] = acos(g1r[i]);
452 for(i=0;i<g2_order;i++)
453 lsp[i*2+1] = acos(g2r[i]);