1 // ---------------------------------------------------------------------------------------------------------------------------------
4 // _ __ ___ _ __ ___ __ _ _ __ ___ _ __ _ __
5 // | '_ ` _ \| '_ ` _ \ / _` | '__| / __| '_ \| '_ \
6 // | | | | | | | | | | | (_| | | _ | (__| |_) | |_) |
7 // |_| |_| |_|_| |_| |_|\__, |_| (_) \___| .__/| .__/
11 // Memory manager & tracking software
13 // Best viewed with 8-character tabs and (at least) 132 columns
15 // ---------------------------------------------------------------------------------------------------------------------------------
17 // Restrictions & freedoms pertaining to usage and redistribution of this software:
19 // * This software is 100% free
20 // * If you use this software (in part or in whole) you must credit the author.
21 // * This software may not be re-distributed (in part or in whole) in a modified
22 // form without clear documentation on how to obtain a copy of the original work.
23 // * You may not use this software to directly or indirectly cause harm to others.
24 // * This software is provided as-is and without warrantee. Use at your own risk.
26 // For more information, visit HTTP://www.FluidStudios.com
28 // ---------------------------------------------------------------------------------------------------------------------------------
29 // Originally created on 12/22/2000 by Paul Nettle
31 // Copyright 2000, Fluid Studios, Inc., all rights reserved.
32 // ---------------------------------------------------------------------------------------------------------------------------------
36 // This software is self-documented with periodic comments. Before you start using this software, perform a search for the string
37 // "-DOC-" to locate pertinent information about how to use this software.
39 // You are also encouraged to read the comment blocks throughout this source file. They will help you understand how this memory
40 // tracking software works, so you can better utilize it within your applications.
44 // 1. If you get compiler errors having to do with set_new_handler, then go through this source and search/replace
45 // "std::set_new_handler" with "set_new_handler".
47 // 2. This code purposely uses no external routines that allocate RAM (other than the raw allocation routines, such as malloc). We
48 // do this because we want this to be as self-contained as possible. As an example, we don't use assert, because when running
49 // under WIN32, the assert brings up a dialog box, which allocates RAM. Doing this in the middle of an allocation would be bad.
51 // 3. When trying to override new/delete under MFC (which has its own version of global new/delete) the linker will complain. In
52 // order to fix this error, use the compiler option: /FORCE, which will force it to build an executable even with linker errors.
53 // Be sure to check those errors each time you compile, otherwise, you may miss a valid linker error.
55 // 4. If you see something that looks odd to you or seems like a strange way of going about doing something, then consider that this
56 // code was carefully thought out. If something looks odd, then just assume I've got a good reason for doing it that way (an
57 // example is the use of the class MemStaticTimeTracker.)
59 // 5. With MFC applications, you will need to comment out any occurance of "#define new DEBUG_NEW" from all source files.
61 // 6. Include file dependencies are _very_important_ for getting the MMGR to integrate nicely into your application. Be careful if
62 // you're including standard includes from within your own project inclues; that will break this very specific dependency order.
63 // It should look like this:
65 // #include <stdio.h> // Standard includes MUST come first
66 // #include <stdlib.h> //
67 // #include <streamio> //
69 // #include "mmgr.h" // mmgr.h MUST come next
71 // #include "myfile1.h" // Project includes MUST come last
72 // #include "myfile2.h" //
73 // #include "myfile3.h" //
75 // ---------------------------------------------------------------------------------------------------------------------------------
92 // ---------------------------------------------------------------------------------------------------------------------------------
93 // -DOC- If you're like me, it's hard to gain trust in foreign code. This memory manager will try to INDUCE your code to crash (for
94 // very good reasons... like making bugs obvious as early as possible.) Some people may be inclined to remove this memory tracking
95 // software if it causes crashes that didn't exist previously. In reality, these new crashes are the BEST reason for using this
98 // Whether this software causes your application to crash, or if it reports errors, you need to be able to TRUST this software. To
99 // this end, you are given some very simple debugging tools.
101 // The quickest way to locate problems is to enable the STRESS_TEST macro (below.) This should catch 95% of the crashes before they
102 // occur by validating every allocation each time this memory manager performs an allocation function. If that doesn't work, keep
105 // If you enable the TEST_MEMORY_MANAGER #define (below), this memory manager will log an entry in the memory.log file each time it
106 // enters and exits one of its primary allocation handling routines. Each call that succeeds should place an "ENTER" and an "EXIT"
107 // into the log. If the program crashes within the memory manager, it will log an "ENTER", but not an "EXIT". The log will also
108 // report the name of the routine.
110 // Just because this memory manager crashes does not mean that there is a bug here! First, an application could inadvertantly damage
111 // the heap, causing malloc(), realloc() or free() to crash. Also, an application could inadvertantly damage some of the memory used
112 // by this memory tracking software, causing it to crash in much the same way that a damaged heap would affect the standard
113 // allocation routines.
115 // In the event of a crash within this code, the first thing you'll want to do is to locate the actual line of code that is
116 // crashing. You can do this by adding log() entries throughout the routine that crashes, repeating this process until you narrow
117 // in on the offending line of code. If the crash happens in a standard C allocation routine (i.e. malloc, realloc or free) don't
118 // bother contacting me, your application has damaged the heap. You can help find the culprit in your code by enabling the
119 // STRESS_TEST macro (below.)
121 // If you truely suspect a bug in this memory manager (and you had better be sure about it! :) you can contact me at
122 // midnight@FluidStudios.com. Before you do, however, check for a newer version at:
124 // http://www.FluidStudios.com/publications.html
126 // When using this debugging aid, make sure that you are NOT setting the alwaysLogAll variable on, otherwise the log could be
127 // cluttered and hard to read.
128 // ---------------------------------------------------------------------------------------------------------------------------------
130 //#define TEST_MEMORY_MANAGER
132 // ---------------------------------------------------------------------------------------------------------------------------------
133 // -DOC- Enable this sucker if you really want to stress-test your app's memory usage, or to help find hard-to-find bugs
134 // ---------------------------------------------------------------------------------------------------------------------------------
136 //#define STRESS_TEST
138 // ---------------------------------------------------------------------------------------------------------------------------------
139 // -DOC- Enable this sucker if you want to stress-test your app's error-handling. Set RANDOM_FAIL to the percentage of failures you
140 // want to test with (0 = none, >100 = all failures).
141 // ---------------------------------------------------------------------------------------------------------------------------------
143 //#define RANDOM_FAILURE 10.0
145 // ---------------------------------------------------------------------------------------------------------------------------------
146 // -DOC- Locals -- modify these flags to suit your needs
147 // ---------------------------------------------------------------------------------------------------------------------------------
150 static const unsigned int hashBits = 12;
151 static bool randomWipe = true;
152 static bool alwaysValidateAll = true;
153 static bool alwaysLogAll = true;
154 static bool alwaysWipeAll = true;
155 static bool cleanupLogOnFirstRun = true;
156 static const unsigned int paddingSize = 1024; // An extra 8K per allocation!
158 static const unsigned int hashBits = 12;
159 static bool randomWipe = false;
160 static bool alwaysValidateAll = false;
161 static bool alwaysLogAll = false;
162 static bool alwaysWipeAll = true;
163 static bool cleanupLogOnFirstRun = true;
164 static const unsigned int paddingSize = 4;
167 // ---------------------------------------------------------------------------------------------------------------------------------
168 // We define our own assert, because we don't want to bring up an assertion dialog, since that allocates RAM. Our new assert
169 // simply declares a forced breakpoint.
171 // The BEOS assert added by Arvid Norberg <arvid@iname.com>.
172 // ---------------------------------------------------------------------------------------------------------------------------------
176 #define m_assert(x) if ((x) == false) __asm { int 3 }
178 #define m_assert(x) {}
180 #elif defined(__BEOS__)
182 extern void debugger(const char *message);
183 #define m_assert(x) if ((x) == false) debugger("mmgr: assert failed")
185 #define m_assert(x) {}
187 #else // Linux uses assert, which we can use safely, since it doesn't bring up a dialog within the program.
188 #define m_assert(cond) assert(cond)
191 // ---------------------------------------------------------------------------------------------------------------------------------
192 // Here, we turn off our macros because any place in this source file where the word 'new' or the word 'delete' (etc.)
193 // appear will be expanded by the macro. So to avoid problems using them within this source file, we'll just #undef them.
194 // ---------------------------------------------------------------------------------------------------------------------------------
203 // ---------------------------------------------------------------------------------------------------------------------------------
204 // Defaults for the constants & statics in the MemoryManager class
205 // ---------------------------------------------------------------------------------------------------------------------------------
207 const unsigned int m_alloc_unknown = 0;
208 const unsigned int m_alloc_new = 1;
209 const unsigned int m_alloc_new_array = 2;
210 const unsigned int m_alloc_malloc = 3;
211 const unsigned int m_alloc_calloc = 4;
212 const unsigned int m_alloc_realloc = 5;
213 const unsigned int m_alloc_delete = 6;
214 const unsigned int m_alloc_delete_array = 7;
215 const unsigned int m_alloc_free = 8;
217 // ---------------------------------------------------------------------------------------------------------------------------------
218 // -DOC- Get to know these values. They represent the values that will be used to fill unused and deallocated RAM.
219 // ---------------------------------------------------------------------------------------------------------------------------------
221 static unsigned int prefixPattern = 0xbaadf00d; // Fill pattern for bytes preceeding allocated blocks
222 static unsigned int postfixPattern = 0xdeadc0de; // Fill pattern for bytes following allocated blocks
223 static unsigned int unusedPattern = 0xfeedface; // Fill pattern for freshly allocated blocks
224 static unsigned int releasedPattern = 0xdeadbeef; // Fill pattern for deallocated blocks
226 // ---------------------------------------------------------------------------------------------------------------------------------
228 // ---------------------------------------------------------------------------------------------------------------------------------
230 static const unsigned int hashSize = 1 << hashBits;
231 static const char *allocationTypes[] = {"Unknown",
232 "new", "new[]", "malloc", "calloc",
233 "realloc", "delete", "delete[]", "free"};
234 static sAllocUnit *hashTable[hashSize];
235 static sAllocUnit *reservoir;
236 static unsigned int currentAllocationCount = 0;
237 static unsigned int breakOnAllocationCount = 0;
238 static sMStats stats;
239 static const char *sourceFile = "??";
240 static const char *sourceFunc = "??";
241 static unsigned int sourceLine = 0;
242 static bool staticDeinitTime = false;
243 static sAllocUnit **reservoirBuffer = NULL;
244 static unsigned int reservoirBufferSize = 0;
245 static const char *memoryLogFile = "memory.log";
246 static const char *memoryLeakLogFile = "memleaks.log";
247 static void doCleanupLogOnFirstRun();
249 // ---------------------------------------------------------------------------------------------------------------------------------
250 // Local functions only
251 // ---------------------------------------------------------------------------------------------------------------------------------
253 static void log(const char *format, ...)
257 if (cleanupLogOnFirstRun) doCleanupLogOnFirstRun();
261 static char buffer[2048];
263 va_start(ap, format);
264 vsprintf(buffer, format, ap);
269 FILE *fp = fopen(memoryLogFile, "ab");
271 // If you hit this assert, then the memory logger is unable to log information to a file (can't open the file for some
272 // reason.) You can interrogate the variable 'buffer' to see what was supposed to be logged (but won't be.)
277 // Spit out the data to the log
279 fprintf(fp, "%s\r\n", buffer);
283 // ---------------------------------------------------------------------------------------------------------------------------------
285 static void doCleanupLogOnFirstRun()
287 if (cleanupLogOnFirstRun)
289 unlink(memoryLogFile);
290 cleanupLogOnFirstRun = false;
292 // Print a header for the log
294 time_t t = time(NULL);
295 log("--------------------------------------------------------------------------------");
297 log(" %s - Memory logging file created on %s", memoryLogFile, asctime(localtime(&t)));
298 log("--------------------------------------------------------------------------------");
300 log("This file contains a log of all memory operations performed during the last run.");
302 log("Interrogate this file to track errors or to help track down memory-related");
303 log("issues. You can do this by tracing the allocations performed by a specific owner");
304 log("or by tracking a specific address through a series of allocations and");
305 log("reallocations.");
307 log("There is a lot of useful information here which, when used creatively, can be");
308 log("extremely helpful.");
310 log("Note that the following guides are used throughout this file:");
313 log(" [+] - Allocation");
314 log(" [~] - Reallocation");
315 log(" [-] - Deallocation");
316 log(" [I] - Generic information");
317 log(" [F] - Failure induced for the purpose of stress-testing your application");
318 log(" [D] - Information used for debugging this memory manager");
320 log("...so, to find all errors in the file, search for \"[!]\"");
322 log("--------------------------------------------------------------------------------");
326 // ---------------------------------------------------------------------------------------------------------------------------------
328 static const char *sourceFileStripper(const char *sourceFile)
330 char *ptr = strrchr(sourceFile, '\\');
331 if (ptr) return ptr + 1;
332 ptr = strrchr(sourceFile, '/');
333 if (ptr) return ptr + 1;
337 // ---------------------------------------------------------------------------------------------------------------------------------
339 static const char *ownerString(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc)
342 memset(str, 0, sizeof(str));
343 sprintf(str, "%s(%05d)::%s", sourceFileStripper(sourceFile), sourceLine, sourceFunc);
347 // ---------------------------------------------------------------------------------------------------------------------------------
349 static const char *insertCommas(unsigned int value)
352 memset(str, 0, sizeof(str));
354 sprintf(str, "%u", value);
357 memmove(&str[strlen(str)-3], &str[strlen(str)-4], 4);
358 str[strlen(str) - 4] = ',';
362 memmove(&str[strlen(str)-7], &str[strlen(str)-8], 8);
363 str[strlen(str) - 8] = ',';
365 if (strlen(str) > 11)
367 memmove(&str[strlen(str)-11], &str[strlen(str)-12], 12);
368 str[strlen(str) - 12] = ',';
374 // ---------------------------------------------------------------------------------------------------------------------------------
376 static const char *memorySizeString(unsigned long size)
379 if (size > (1024*1024)) sprintf(str, "%10s (%7.2fM)", insertCommas(size), static_cast<float>(size) / (1024.0f * 1024.0f));
380 else if (size > 1024) sprintf(str, "%10s (%7.2fK)", insertCommas(size), static_cast<float>(size) / 1024.0f);
381 else sprintf(str, "%10s bytes ", insertCommas(size));
385 // ---------------------------------------------------------------------------------------------------------------------------------
387 static sAllocUnit *findAllocUnit(const void *reportedAddress)
390 m_assert(reportedAddress != NULL);
392 // Use the address to locate the hash index. Note that we shift off the lower four bits. This is because most allocated
393 // addresses will be on four-, eight- or even sixteen-byte boundaries. If we didn't do this, the hash index would not have
394 // very good coverage.
396 unsigned int hashIndex = (reinterpret_cast<unsigned int>(const_cast<void *>(reportedAddress)) >> 4) & (hashSize - 1);
397 sAllocUnit *ptr = hashTable[hashIndex];
400 if (ptr->reportedAddress == reportedAddress) return ptr;
407 // ---------------------------------------------------------------------------------------------------------------------------------
409 static size_t calculateActualSize(const size_t reportedSize)
411 // We use DWORDS as our padding, and a long is guaranteed to be 4 bytes, but an int is not (ANSI defines an int as
412 // being the standard word size for a processor; on a 32-bit machine, that's 4 bytes, but on a 64-bit machine, it's
413 // 8 bytes, which means an int can actually be larger than a long.)
415 return reportedSize + paddingSize * sizeof(long) * 2;
418 // ---------------------------------------------------------------------------------------------------------------------------------
420 static size_t calculateReportedSize(const size_t actualSize)
422 // We use DWORDS as our padding, and a long is guaranteed to be 4 bytes, but an int is not (ANSI defines an int as
423 // being the standard word size for a processor; on a 32-bit machine, that's 4 bytes, but on a 64-bit machine, it's
424 // 8 bytes, which means an int can actually be larger than a long.)
426 return actualSize - paddingSize * sizeof(long) * 2;
429 // ---------------------------------------------------------------------------------------------------------------------------------
431 static void *calculateReportedAddress(const void *actualAddress)
435 if (!actualAddress) return NULL;
437 // JUst account for the padding
439 return reinterpret_cast<void *>(const_cast<char *>(reinterpret_cast<const char *>(actualAddress) + sizeof(long) * paddingSize));
442 // ---------------------------------------------------------------------------------------------------------------------------------
444 static void wipeWithPattern(sAllocUnit *allocUnit, unsigned long pattern, const unsigned int originalReportedSize = 0)
446 // For a serious test run, we use wipes of random a random value. However, if this causes a crash, we don't want it to
447 // crash in a differnt place each time, so we specifically DO NOT call srand. If, by chance your program calls srand(),
448 // you may wish to disable that when running with a random wipe test. This will make any crashes more consistent so they
449 // can be tracked down easier.
453 pattern = ((rand() & 0xff) << 24) | ((rand() & 0xff) << 16) | ((rand() & 0xff) << 8) | (rand() & 0xff);
456 // -DOC- We should wipe with 0's if we're not in debug mode, so we can help hide bugs if possible when we release the
457 // product. So uncomment the following line for releases.
459 // Note that the "alwaysWipeAll" should be turned on for this to have effect, otherwise it won't do much good. But we'll
460 // leave it this way (as an option) because this does slow things down.
463 // This part of the operation is optional
465 if (alwaysWipeAll && allocUnit->reportedSize > originalReportedSize)
469 long *lptr = reinterpret_cast<long *>(reinterpret_cast<char *>(allocUnit->reportedAddress) + originalReportedSize);
470 int length = static_cast<int>(allocUnit->reportedSize - originalReportedSize);
472 for (i = 0; i < (length >> 2); i++, lptr++)
477 // Fill the remainder
479 unsigned int shiftCount = 0;
480 char *cptr = reinterpret_cast<char *>(lptr);
481 for (i = 0; i < (length & 0x3); i++, cptr++, shiftCount += 8)
483 *cptr = static_cast<char>((pattern & (0xff << shiftCount)) >> shiftCount);
487 // Write in the prefix/postfix bytes
489 long *pre = reinterpret_cast<long *>(allocUnit->actualAddress);
490 long *post = reinterpret_cast<long *>(reinterpret_cast<char *>(allocUnit->actualAddress) + allocUnit->actualSize - paddingSize * sizeof(long));
491 for (unsigned int i = 0; i < paddingSize; i++, pre++, post++)
493 *pre = prefixPattern;
494 *post = postfixPattern;
498 // ---------------------------------------------------------------------------------------------------------------------------------
500 static void dumpAllocations(FILE *fp)
502 fprintf(fp, "Alloc. Addr Size Addr Size BreakOn BreakOn \r\n");
503 fprintf(fp, "Number Reported Reported Actual Actual Unused Method Dealloc Realloc Allocated by \r\n");
504 fprintf(fp, "------ ---------- ---------- ---------- ---------- ---------- -------- ------- ------- --------------------------------------------------- \r\n");
507 for (unsigned int i = 0; i < hashSize; i++)
509 sAllocUnit *ptr = hashTable[i];
512 fprintf(fp, "%06d 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X %-8s %c %c %s\r\n",
513 ptr->allocationNumber,
514 reinterpret_cast<unsigned int>(ptr->reportedAddress), ptr->reportedSize,
515 reinterpret_cast<unsigned int>(ptr->actualAddress), ptr->actualSize,
517 allocationTypes[ptr->allocationType],
518 ptr->breakOnDealloc ? 'Y':'N',
519 ptr->breakOnRealloc ? 'Y':'N',
520 ownerString(ptr->sourceFile, ptr->sourceLine, ptr->sourceFunc));
526 // ---------------------------------------------------------------------------------------------------------------------------------
528 static void dumpLeakReport()
530 // Open the report file
532 FILE *fp = fopen(memoryLeakLogFile, "w+b");
534 // If you hit this assert, then the memory report generator is unable to log information to a file (can't open the file for
543 static char timeString[25];
544 memset(timeString, 0, sizeof(timeString));
545 time_t t = time(NULL);
546 struct tm *tme = localtime(&t);
547 fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
548 fprintf(fp, "| Memory leak report for: %02d/%02d/%04d %02d:%02d:%02d |\r\n", tme->tm_mon + 1, tme->tm_mday, tme->tm_year + 1900, tme->tm_hour, tme->tm_min, tme->tm_sec);
549 fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
552 if (stats.totalAllocUnitCount)
554 fprintf(fp, "%d memory leak%s found:\r\n", stats.totalAllocUnitCount, stats.totalAllocUnitCount == 1 ? "":"s");
558 fprintf(fp, "Congratulations! No memory leaks found!\r\n");
560 // We can finally free up our own memory allocations
564 for (unsigned int i = 0; i < reservoirBufferSize; i++)
566 free(reservoirBuffer[i]);
568 free(reservoirBuffer);
570 reservoirBufferSize = 0;
576 if (stats.totalAllocUnitCount)
584 // ---------------------------------------------------------------------------------------------------------------------------------
585 // We use a static class to let us know when we're in the midst of static deinitialization
586 // ---------------------------------------------------------------------------------------------------------------------------------
588 class MemStaticTimeTracker
591 MemStaticTimeTracker() {doCleanupLogOnFirstRun();}
592 ~MemStaticTimeTracker() {staticDeinitTime = true; dumpLeakReport();}
594 static MemStaticTimeTracker mstt;
596 // ---------------------------------------------------------------------------------------------------------------------------------
597 // -DOC- Flags & options -- Call these routines to enable/disable the following options
598 // ---------------------------------------------------------------------------------------------------------------------------------
600 bool &m_alwaysValidateAll()
602 // Force a validation of all allocation units each time we enter this software
603 return alwaysValidateAll;
606 // ---------------------------------------------------------------------------------------------------------------------------------
608 bool &m_alwaysLogAll()
610 // Force a log of every allocation & deallocation into memory.log
614 // ---------------------------------------------------------------------------------------------------------------------------------
616 bool &m_alwaysWipeAll()
618 // Force this software to always wipe memory with a pattern when it is being allocated/dallocated
619 return alwaysWipeAll;
622 // ---------------------------------------------------------------------------------------------------------------------------------
624 bool &m_randomeWipe()
626 // Force this software to use a random pattern when wiping memory -- good for stress testing
630 // ---------------------------------------------------------------------------------------------------------------------------------
631 // -DOC- Simply call this routine with the address of an allocated block of RAM, to cause it to force a breakpoint when it is
633 // ---------------------------------------------------------------------------------------------------------------------------------
635 bool &m_breakOnRealloc(void *reportedAddress)
637 // Locate the existing allocation unit
639 sAllocUnit *au = findAllocUnit(reportedAddress);
641 // If you hit this assert, you tried to set a breakpoint on reallocation for an address that doesn't exist. Interrogate the
642 // stack frame or the variable 'au' to see which allocation this is.
643 m_assert(au != NULL);
645 // If you hit this assert, you tried to set a breakpoint on reallocation for an address that wasn't allocated in a way that
646 // is compatible with reallocation.
647 m_assert(au->allocationType == m_alloc_malloc ||
648 au->allocationType == m_alloc_calloc ||
649 au->allocationType == m_alloc_realloc);
651 return au->breakOnRealloc;
654 // ---------------------------------------------------------------------------------------------------------------------------------
655 // -DOC- Simply call this routine with the address of an allocated block of RAM, to cause it to force a breakpoint when it is
657 // ---------------------------------------------------------------------------------------------------------------------------------
659 bool &m_breakOnDealloc(void *reportedAddress)
661 // Locate the existing allocation unit
663 sAllocUnit *au = findAllocUnit(reportedAddress);
665 // If you hit this assert, you tried to set a breakpoint on deallocation for an address that doesn't exist. Interrogate the
666 // stack frame or the variable 'au' to see which allocation this is.
667 m_assert(au != NULL);
669 return au->breakOnDealloc;
672 // ---------------------------------------------------------------------------------------------------------------------------------
673 // -DOC- When tracking down a difficult bug, use this routine to force a breakpoint on a specific allocation count
674 // ---------------------------------------------------------------------------------------------------------------------------------
676 void m_breakOnAllocation(unsigned int count)
678 breakOnAllocationCount = count;
681 // ---------------------------------------------------------------------------------------------------------------------------------
682 // Used by the macros
683 // ---------------------------------------------------------------------------------------------------------------------------------
685 void m_setOwner(const char *file, const unsigned int line, const char *func)
687 // You're probably wondering about this...
689 // It's important for this memory manager to primarily work with global new/delete in their original forms (i.e. with
690 // no extra parameters.) In order to do this, we use macros that call this function prior to operators new & delete. This
691 // is fine... usually. Here's what actually happens when you use this macro to delete an object:
693 // m_setOwner(__FILE__, __LINE__, __FUNCTION__) --> object::~object() --> delete
695 // Note that the compiler inserts a call to the object's destructor just prior to calling our overridden operator delete.
696 // But what happens when we delete an object whose destructor deletes another object, whose desctuctor deletes another
697 // object? Here's a diagram (indentation follows stack depth):
699 // m_setOwner(...) -> ~obj1() // original call to delete obj1
700 // m_setOwner(...) -> ~obj2() // obj1's destructor deletes obj2
701 // m_setOwner(...) -> ~obj3() // obj2's destructor deletes obj3
702 // ... // obj3's destructor just does some stuff
703 // delete // back in obj2's destructor, we call delete
704 // delete // back in obj1's destructor, we call delete
705 // delete // back to our original call, we call delete
707 // Because m_setOwner() just sets up some static variables (below) it's important that each call to m_setOwner() and
708 // successive calls to new/delete alternate. However, in this case, three calls to m_setOwner() happen in succession
709 // followed by three calls to delete in succession (with a few calls to destructors mixed in for fun.) This means that
710 // only the final call to delete (in this chain of events) will have the proper reporting, and the first two in the chain
711 // will not have ANY owner-reporting information. The deletes will still work fine, we just won't know who called us.
713 // "Then build a stack, my friend!" you might think... but it's a very common thing that people will be working with third-
714 // party libraries (including MFC under Windows) which is not compiled with this memory manager's macros. In those cases,
715 // m_setOwner() is never called, and rightfully should not have the proper trace-back information. So if one of the
716 // destructors in the chain ends up being a call to a delete from a non-mmgr-compiled library, the stack will get confused.
718 // I've been unable to find a solution to this problem, but at least we can detect it and report the data before we
719 // lose it. That's what this is all about. It makes it somewhat confusing to read in the logs, but at least ALL the
720 // information is present...
722 // There's a caveat here... The compiler is not required to call operator delete if the value being deleted is NULL.
723 // In this case, any call to delete with a NULL will sill call m_setOwner(), which will make m_setOwner() think that
724 // there is a destructor chain becuase we setup the variables, but nothing gets called to clear them. Because of this
725 // we report a "Possible destructor chain".
727 // Thanks to J. Woznack (from Kodiak Interactive Software Studios -- www.kodiakgames.com) for pointing this out.
729 if (sourceLine && alwaysLogAll)
731 log("[I] NOTE! Possible destructor chain: previous owner is %s", ownerString(sourceFile, sourceLine, sourceFunc));
734 // Okay... save this stuff off so we can keep track of the caller
741 // ---------------------------------------------------------------------------------------------------------------------------------
743 static void resetGlobals()
750 // ---------------------------------------------------------------------------------------------------------------------------------
753 // These are the standard new/new[] operators. They are merely interface functions that operate like normal new/new[], but use our
754 // memory tracking routines.
755 // ---------------------------------------------------------------------------------------------------------------------------------
757 void *operator new(size_t reportedSize)
759 #ifdef TEST_MEMORY_MANAGER
760 log("[D] ENTER: new");
765 const char *file = sourceFile;
766 const unsigned int line = sourceLine;
767 const char *func = sourceFunc;
769 // ANSI says: allocation requests of 0 bytes will still return a valid value
771 if (reportedSize == 0) reportedSize = 1;
773 // ANSI says: loop continuously because the error handler could possibly free up some memory
777 // Try the allocation
779 void *ptr = m_allocator(file, line, func, m_alloc_new, reportedSize);
782 #ifdef TEST_MEMORY_MANAGER
783 log("[D] EXIT : new");
788 // There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then
789 // set it back again.
791 std::new_handler nh = std::set_new_handler(0);
792 std::set_new_handler(nh);
794 // If there is an error handler, call it
801 // Otherwise, throw the exception
805 #ifdef TEST_MEMORY_MANAGER
806 log("[D] EXIT : new");
808 throw std::bad_alloc();
813 // ---------------------------------------------------------------------------------------------------------------------------------
815 void *operator new[](size_t reportedSize)
817 #ifdef TEST_MEMORY_MANAGER
818 log("[D] ENTER: new[]");
823 const char *file = sourceFile;
824 const unsigned int line = sourceLine;
825 const char *func = sourceFunc;
827 // The ANSI standard says that allocation requests of 0 bytes will still return a valid value
829 if (reportedSize == 0) reportedSize = 1;
831 // ANSI says: loop continuously because the error handler could possibly free up some memory
835 // Try the allocation
837 void *ptr = m_allocator(file, line, func, m_alloc_new_array, reportedSize);
840 #ifdef TEST_MEMORY_MANAGER
841 log("[D] EXIT : new[]");
846 // There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then
847 // set it back again.
849 std::new_handler nh = std::set_new_handler(0);
850 std::set_new_handler(nh);
852 // If there is an error handler, call it
859 // Otherwise, throw the exception
863 #ifdef TEST_MEMORY_MANAGER
864 log("[D] EXIT : new[]");
866 throw std::bad_alloc();
871 // ---------------------------------------------------------------------------------------------------------------------------------
872 // Other global new/new[]
874 // These are the standard new/new[] operators as used by Microsoft's memory tracker. We don't want them interfering with our memory
875 // tracking efforts. Like the previous versions, these are merely interface functions that operate like normal new/new[], but use
876 // our memory tracking routines.
877 // ---------------------------------------------------------------------------------------------------------------------------------
879 void *operator new(size_t reportedSize, const char *sourceFile, int sourceLine)
881 #ifdef TEST_MEMORY_MANAGER
882 log("[D] ENTER: new");
885 // The ANSI standard says that allocation requests of 0 bytes will still return a valid value
887 if (reportedSize == 0) reportedSize = 1;
889 // ANSI says: loop continuously because the error handler could possibly free up some memory
893 // Try the allocation
895 void *ptr = m_allocator(sourceFile, sourceLine, "??", m_alloc_new, reportedSize);
898 #ifdef TEST_MEMORY_MANAGER
899 log("[D] EXIT : new");
904 // There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then
905 // set it back again.
907 std::new_handler nh = std::set_new_handler(0);
908 std::set_new_handler(nh);
910 // If there is an error handler, call it
917 // Otherwise, throw the exception
921 #ifdef TEST_MEMORY_MANAGER
922 log("[D] EXIT : new");
924 throw std::bad_alloc();
929 // ---------------------------------------------------------------------------------------------------------------------------------
931 void *operator new[](size_t reportedSize, const char *sourceFile, int sourceLine)
933 #ifdef TEST_MEMORY_MANAGER
934 log("[D] ENTER: new[]");
937 // The ANSI standard says that allocation requests of 0 bytes will still return a valid value
939 if (reportedSize == 0) reportedSize = 1;
941 // ANSI says: loop continuously because the error handler could possibly free up some memory
945 // Try the allocation
947 void *ptr = m_allocator(sourceFile, sourceLine, "??", m_alloc_new_array, reportedSize);
950 #ifdef TEST_MEMORY_MANAGER
951 log("[D] EXIT : new[]");
956 // There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then
957 // set it back again.
959 std::new_handler nh = std::set_new_handler(0);
960 std::set_new_handler(nh);
962 // If there is an error handler, call it
969 // Otherwise, throw the exception
973 #ifdef TEST_MEMORY_MANAGER
974 log("[D] EXIT : new[]");
976 throw std::bad_alloc();
981 // ---------------------------------------------------------------------------------------------------------------------------------
982 // Global delete/delete[]
984 // These are the standard delete/delete[] operators. They are merely interface functions that operate like normal delete/delete[],
985 // but use our memory tracking routines.
986 // ---------------------------------------------------------------------------------------------------------------------------------
988 void operator delete(void *reportedAddress)
990 #ifdef TEST_MEMORY_MANAGER
991 log("[D] ENTER: delete");
994 // ANSI says: delete & delete[] allow NULL pointers (they do nothing)
996 if (reportedAddress) m_deallocator(sourceFile, sourceLine, sourceFunc, m_alloc_delete, reportedAddress);
997 else if (alwaysLogAll) log("[-] ----- %8s of NULL by %s", allocationTypes[m_alloc_delete], ownerString(sourceFile, sourceLine, sourceFunc));
999 // Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown
1000 // source (i.e. they didn't include our H file) then we won't think it was the last allocation.
1004 #ifdef TEST_MEMORY_MANAGER
1005 log("[D] EXIT : delete");
1009 // ---------------------------------------------------------------------------------------------------------------------------------
1011 void operator delete[](void *reportedAddress)
1013 #ifdef TEST_MEMORY_MANAGER
1014 log("[D] ENTER: delete[]");
1017 // ANSI says: delete & delete[] allow NULL pointers (they do nothing)
1019 if (reportedAddress) m_deallocator(sourceFile, sourceLine, sourceFunc, m_alloc_delete_array, reportedAddress);
1020 else if (alwaysLogAll)
1021 log("[-] ----- %8s of NULL by %s", allocationTypes[m_alloc_delete_array], ownerString(sourceFile, sourceLine, sourceFunc));
1023 // Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown
1024 // source (i.e. they didn't include our H file) then we won't think it was the last allocation.
1028 #ifdef TEST_MEMORY_MANAGER
1029 log("[D] EXIT : delete[]");
1033 // ---------------------------------------------------------------------------------------------------------------------------------
1034 // Allocate memory and track it
1035 // ---------------------------------------------------------------------------------------------------------------------------------
1037 void *m_allocator(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc, const unsigned int allocationType, const size_t reportedSize)
1041 #ifdef TEST_MEMORY_MANAGER
1042 log("[D] ENTER: m_allocator()");
1045 // Increase our allocation count
1047 currentAllocationCount++;
1051 if (alwaysLogAll) log("[+] %05d %8s of size 0x%08X(%08d) by %s", currentAllocationCount, allocationTypes[allocationType], reportedSize, reportedSize, ownerString(sourceFile, sourceLine, sourceFunc));
1053 // If you hit this assert, you requested a breakpoint on a specific allocation count
1054 m_assert(currentAllocationCount != breakOnAllocationCount);
1056 // If necessary, grow the reservoir of unused allocation units
1060 // Allocate 256 reservoir elements
1062 reservoir = (sAllocUnit *) malloc(sizeof(sAllocUnit) * 256);
1064 // If you hit this assert, then the memory manager failed to allocate internal memory for tracking the
1066 m_assert(reservoir != NULL);
1068 // Danger Will Robinson!
1070 if (reservoir == NULL) throw "Unable to allocate RAM for internal memory tracking data";
1072 // Build a linked-list of the elements in our reservoir
1074 memset(reservoir, 0, sizeof(sAllocUnit) * 256);
1075 for (unsigned int i = 0; i < 256 - 1; i++)
1077 reservoir[i].next = &reservoir[i+1];
1080 // Add this address to our reservoirBuffer so we can free it later
1082 sAllocUnit **temp = (sAllocUnit **) realloc(reservoirBuffer, (reservoirBufferSize + 1) * sizeof(sAllocUnit *));
1086 reservoirBuffer = temp;
1087 reservoirBuffer[reservoirBufferSize++] = reservoir;
1091 // Logical flow says this should never happen...
1092 m_assert(reservoir != NULL);
1094 // Grab a new allocaton unit from the front of the reservoir
1096 sAllocUnit *au = reservoir;
1097 reservoir = au->next;
1099 // Populate it with some real data
1101 memset(au, 0, sizeof(sAllocUnit));
1102 au->actualSize = calculateActualSize(reportedSize);
1103 #ifdef RANDOM_FAILURE
1105 double b = RAND_MAX / 100.0 * RANDOM_FAILURE;
1108 au->actualAddress = malloc(au->actualSize);
1112 log("[F] Random faiure");
1113 au->actualAddress = NULL;
1116 au->actualAddress = malloc(au->actualSize);
1118 au->reportedSize = reportedSize;
1119 au->reportedAddress = calculateReportedAddress(au->actualAddress);
1120 au->allocationType = allocationType;
1121 au->sourceLine = sourceLine;
1122 au->allocationNumber = currentAllocationCount;
1123 if (sourceFile) strncpy(au->sourceFile, sourceFileStripper(sourceFile), sizeof(au->sourceFile) - 1);
1124 else strcpy (au->sourceFile, "??");
1125 if (sourceFunc) strncpy(au->sourceFunc, sourceFunc, sizeof(au->sourceFunc) - 1);
1126 else strcpy (au->sourceFunc, "??");
1128 // We don't want to assert with random failures, because we want the application to deal with them.
1130 #ifndef RANDOM_FAILURE
1131 // If you hit this assert, then the requested allocation simply failed (you're out of memory.) Interrogate the
1132 // variable 'au' or the stack frame to see what you were trying to do.
1133 m_assert(au->actualAddress != NULL);
1136 if (au->actualAddress == NULL)
1138 throw "Request for allocation failed. Out of memory.";
1141 // If you hit this assert, then this allocation was made from a source that isn't setup to use this memory tracking
1142 // software, use the stack frame to locate the source and include our H file.
1143 m_assert(allocationType != m_alloc_unknown);
1145 // Insert the new allocation into the hash table
1147 unsigned int hashIndex = (reinterpret_cast<unsigned int>(au->reportedAddress) >> 4) & (hashSize - 1);
1148 if (hashTable[hashIndex]) hashTable[hashIndex]->prev = au;
1149 au->next = hashTable[hashIndex];
1151 hashTable[hashIndex] = au;
1153 // Account for the new allocatin unit in our stats
1155 stats.totalReportedMemory += static_cast<unsigned int>(au->reportedSize);
1156 stats.totalActualMemory += static_cast<unsigned int>(au->actualSize);
1157 stats.totalAllocUnitCount++;
1158 if (stats.totalReportedMemory > stats.peakReportedMemory) stats.peakReportedMemory = stats.totalReportedMemory;
1159 if (stats.totalActualMemory > stats.peakActualMemory) stats.peakActualMemory = stats.totalActualMemory;
1160 if (stats.totalAllocUnitCount > stats.peakAllocUnitCount) stats.peakAllocUnitCount = stats.totalAllocUnitCount;
1161 stats.accumulatedReportedMemory += static_cast<unsigned int>(au->reportedSize);
1162 stats.accumulatedActualMemory += static_cast<unsigned int>(au->actualSize);
1163 stats.accumulatedAllocUnitCount++;
1165 // Prepare the allocation unit for use (wipe it with recognizable garbage)
1167 wipeWithPattern(au, unusedPattern);
1169 // calloc() expects the reported memory address range to be filled with 0's
1171 if (allocationType == m_alloc_calloc)
1173 memset(au->reportedAddress, 0, au->reportedSize);
1176 // Validate every single allocated unit in memory
1178 if (alwaysValidateAll) m_validateAllAllocUnits();
1182 if (alwaysLogAll) log("[+] ----> addr 0x%08X", reinterpret_cast<unsigned int>(au->reportedAddress));
1184 // Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown
1185 // source (i.e. they didn't include our H file) then we won't think it was the last allocation.
1189 // Return the (reported) address of the new allocation unit
1191 #ifdef TEST_MEMORY_MANAGER
1192 log("[D] EXIT : m_allocator()");
1195 return au->reportedAddress;
1197 catch(const char *err)
1199 // Deal with the errors
1204 #ifdef TEST_MEMORY_MANAGER
1205 log("[D] EXIT : m_allocator()");
1212 // ---------------------------------------------------------------------------------------------------------------------------------
1213 // Reallocate memory and track it
1214 // ---------------------------------------------------------------------------------------------------------------------------------
1216 void *m_reallocator(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc, const unsigned int reallocationType, const size_t reportedSize, void *reportedAddress)
1220 #ifdef TEST_MEMORY_MANAGER
1221 log("[D] ENTER: m_reallocator()");
1224 // Calling realloc with a NULL should force same operations as a malloc
1226 if (!reportedAddress)
1228 return m_allocator(sourceFile, sourceLine, sourceFunc, reallocationType, reportedSize);
1231 // Increase our allocation count
1233 currentAllocationCount++;
1235 // If you hit this assert, you requested a breakpoint on a specific allocation count
1236 m_assert(currentAllocationCount != breakOnAllocationCount);
1240 if (alwaysLogAll) log("[~] %05d %8s of size 0x%08X(%08d) by %s", currentAllocationCount, allocationTypes[reallocationType], reportedSize, reportedSize, ownerString(sourceFile, sourceLine, sourceFunc));
1242 // Locate the existing allocation unit
1244 sAllocUnit *au = findAllocUnit(reportedAddress);
1246 // If you hit this assert, you tried to reallocate RAM that wasn't allocated by this memory manager.
1247 m_assert(au != NULL);
1248 if (au == NULL) throw "Request to reallocate RAM that was never allocated";
1250 // If you hit this assert, then the allocation unit that is about to be reallocated is damaged. But you probably
1251 // already know that from a previous assert you should have seen in validateAllocUnit() :)
1252 m_assert(m_validateAllocUnit(au));
1254 // If you hit this assert, then this reallocation was made from a source that isn't setup to use this memory
1255 // tracking software, use the stack frame to locate the source and include our H file.
1256 m_assert(reallocationType != m_alloc_unknown);
1258 // If you hit this assert, you were trying to reallocate RAM that was not allocated in a way that is compatible with
1259 // realloc. In other words, you have a allocation/reallocation mismatch.
1260 m_assert(au->allocationType == m_alloc_malloc ||
1261 au->allocationType == m_alloc_calloc ||
1262 au->allocationType == m_alloc_realloc);
1264 // If you hit this assert, then the "break on realloc" flag for this allocation unit is set (and will continue to be
1265 // set until you specifically shut it off. Interrogate the 'au' variable to determine information about this
1267 m_assert(au->breakOnRealloc == false);
1269 // Keep track of the original size
1271 unsigned int originalReportedSize = static_cast<unsigned int>(au->reportedSize);
1273 if (alwaysLogAll) log("[~] ----> from 0x%08X(%08d)", originalReportedSize, originalReportedSize);
1275 // Do the reallocation
1277 void *oldReportedAddress = reportedAddress;
1278 size_t newActualSize = calculateActualSize(reportedSize);
1279 void *newActualAddress = NULL;
1280 #ifdef RANDOM_FAILURE
1282 double b = RAND_MAX / 100.0 * RANDOM_FAILURE;
1285 newActualAddress = realloc(au->actualAddress, newActualSize);
1289 log("[F] Random faiure");
1292 newActualAddress = realloc(au->actualAddress, newActualSize);
1295 // We don't want to assert with random failures, because we want the application to deal with them.
1297 #ifndef RANDOM_FAILURE
1298 // If you hit this assert, then the requested allocation simply failed (you're out of memory) Interrogate the
1299 // variable 'au' to see the original allocation. You can also query 'newActualSize' to see the amount of memory
1300 // trying to be allocated. Finally, you can query 'reportedSize' to see how much memory was requested by the caller.
1301 m_assert(newActualAddress);
1304 if (!newActualAddress) throw "Request for reallocation failed. Out of memory.";
1306 // Remove this allocation from our stats (we'll add the new reallocation again later)
1308 stats.totalReportedMemory -= static_cast<unsigned int>(au->reportedSize);
1309 stats.totalActualMemory -= static_cast<unsigned int>(au->actualSize);
1311 // Update the allocation with the new information
1313 au->actualSize = newActualSize;
1314 au->actualAddress = newActualAddress;
1315 au->reportedSize = calculateReportedSize(newActualSize);
1316 au->reportedAddress = calculateReportedAddress(newActualAddress);
1317 au->allocationType = reallocationType;
1318 au->sourceLine = sourceLine;
1319 au->allocationNumber = currentAllocationCount;
1320 if (sourceFile) strncpy(au->sourceFile, sourceFileStripper(sourceFile), sizeof(au->sourceFile) - 1);
1321 else strcpy (au->sourceFile, "??");
1322 if (sourceFunc) strncpy(au->sourceFunc, sourceFunc, sizeof(au->sourceFunc) - 1);
1323 else strcpy (au->sourceFunc, "??");
1325 // The reallocation may cause the address to change, so we should relocate our allocation unit within the hash table
1327 unsigned int hashIndex = static_cast<unsigned int>(-1);
1328 if (oldReportedAddress != au->reportedAddress)
1330 // Remove this allocation unit from the hash table
1333 unsigned int hashIndex = (reinterpret_cast<unsigned int>(oldReportedAddress) >> 4) & (hashSize - 1);
1334 if (hashTable[hashIndex] == au)
1336 hashTable[hashIndex] = hashTable[hashIndex]->next;
1340 if (au->prev) au->prev->next = au->next;
1341 if (au->next) au->next->prev = au->prev;
1345 // Re-insert it back into the hash table
1347 hashIndex = (reinterpret_cast<unsigned int>(au->reportedAddress) >> 4) & (hashSize - 1);
1348 if (hashTable[hashIndex]) hashTable[hashIndex]->prev = au;
1349 au->next = hashTable[hashIndex];
1351 hashTable[hashIndex] = au;
1354 // Account for the new allocatin unit in our stats
1356 stats.totalReportedMemory += static_cast<unsigned int>(au->reportedSize);
1357 stats.totalActualMemory += static_cast<unsigned int>(au->actualSize);
1358 if (stats.totalReportedMemory > stats.peakReportedMemory) stats.peakReportedMemory = stats.totalReportedMemory;
1359 if (stats.totalActualMemory > stats.peakActualMemory) stats.peakActualMemory = stats.totalActualMemory;
1360 int deltaReportedSize = static_cast<int>(reportedSize - originalReportedSize);
1361 if (deltaReportedSize > 0)
1363 stats.accumulatedReportedMemory += deltaReportedSize;
1364 stats.accumulatedActualMemory += deltaReportedSize;
1367 // Prepare the allocation unit for use (wipe it with recognizable garbage)
1369 wipeWithPattern(au, unusedPattern, originalReportedSize);
1371 // If you hit this assert, then something went wrong, because the allocation unit was properly validated PRIOR to
1372 // the reallocation. This should not happen.
1373 m_assert(m_validateAllocUnit(au));
1375 // Validate every single allocated unit in memory
1377 if (alwaysValidateAll) m_validateAllAllocUnits();
1381 if (alwaysLogAll) log("[~] ----> addr 0x%08X", reinterpret_cast<unsigned int>(au->reportedAddress));
1383 // Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown
1384 // source (i.e. they didn't include our H file) then we won't think it was the last allocation.
1388 // Return the (reported) address of the new allocation unit
1390 #ifdef TEST_MEMORY_MANAGER
1391 log("[D] EXIT : m_reallocator()");
1394 return au->reportedAddress;
1396 catch(const char *err)
1398 // Deal with the errors
1403 #ifdef TEST_MEMORY_MANAGER
1404 log("[D] EXIT : m_reallocator()");
1411 // ---------------------------------------------------------------------------------------------------------------------------------
1412 // Deallocate memory and track it
1413 // ---------------------------------------------------------------------------------------------------------------------------------
1415 void m_deallocator(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc, const unsigned int deallocationType, const void *reportedAddress)
1419 #ifdef TEST_MEMORY_MANAGER
1420 log("[D] ENTER: m_deallocator()");
1425 if (alwaysLogAll) log("[-] ----- %8s of addr 0x%08X by %s", allocationTypes[deallocationType], reinterpret_cast<unsigned int>(const_cast<void *>(reportedAddress)), ownerString(sourceFile, sourceLine, sourceFunc));
1427 // We should only ever get here with a null pointer if they try to do so with a call to free() (delete[] and delete will
1428 // both bail before they get here.) So, since ANSI allows free(NULL), we'll not bother trying to actually free the allocated
1429 // memory or track it any further.
1431 if (reportedAddress)
1433 // Go get the allocation unit
1435 sAllocUnit *au = findAllocUnit(reportedAddress);
1437 // If you hit this assert, you tried to deallocate RAM that wasn't allocated by this memory manager.
1438 m_assert(au != NULL);
1439 if (au == NULL) throw "Request to deallocate RAM that was never allocated";
1441 // If you hit this assert, then the allocation unit that is about to be deallocated is damaged. But you probably
1442 // already know that from a previous assert you should have seen in validateAllocUnit() :)
1443 m_assert(m_validateAllocUnit(au));
1445 // If you hit this assert, then this deallocation was made from a source that isn't setup to use this memory
1446 // tracking software, use the stack frame to locate the source and include our H file.
1447 m_assert(deallocationType != m_alloc_unknown);
1449 // If you hit this assert, you were trying to deallocate RAM that was not allocated in a way that is compatible with
1450 // the deallocation method requested. In other words, you have a allocation/deallocation mismatch.
1451 m_assert((deallocationType == m_alloc_delete && au->allocationType == m_alloc_new ) ||
1452 (deallocationType == m_alloc_delete_array && au->allocationType == m_alloc_new_array) ||
1453 (deallocationType == m_alloc_free && au->allocationType == m_alloc_malloc ) ||
1454 (deallocationType == m_alloc_free && au->allocationType == m_alloc_calloc ) ||
1455 (deallocationType == m_alloc_free && au->allocationType == m_alloc_realloc ) ||
1456 (deallocationType == m_alloc_unknown ) );
1458 // If you hit this assert, then the "break on dealloc" flag for this allocation unit is set. Interrogate the 'au'
1459 // variable to determine information about this allocation unit.
1460 m_assert(au->breakOnDealloc == false);
1462 // Wipe the deallocated RAM with a new pattern. This doen't actually do us much good in debug mode under WIN32,
1463 // because Microsoft's memory debugging & tracking utilities will wipe it right after we do. Oh well.
1465 wipeWithPattern(au, releasedPattern);
1467 // Do the deallocation
1469 free(au->actualAddress);
1471 // Remove this allocation unit from the hash table
1473 unsigned int hashIndex = (reinterpret_cast<unsigned int>(au->reportedAddress) >> 4) & (hashSize - 1);
1474 if (hashTable[hashIndex] == au)
1476 hashTable[hashIndex] = au->next;
1480 if (au->prev) au->prev->next = au->next;
1481 if (au->next) au->next->prev = au->prev;
1484 // Remove this allocation from our stats
1486 stats.totalReportedMemory -= static_cast<unsigned int>(au->reportedSize);
1487 stats.totalActualMemory -= static_cast<unsigned int>(au->actualSize);
1488 stats.totalAllocUnitCount--;
1490 // Add this allocation unit to the front of our reservoir of unused allocation units
1492 memset(au, 0, sizeof(sAllocUnit));
1493 au->next = reservoir;
1497 // Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown
1498 // source (i.e. they didn't include our H file) then we won't think it was the last allocation.
1502 // Validate every single allocated unit in memory
1504 if (alwaysValidateAll) m_validateAllAllocUnits();
1506 // If we're in the midst of static deinitialization time, track any pending memory leaks
1508 if (staticDeinitTime) dumpLeakReport();
1510 catch(const char *err)
1518 #ifdef TEST_MEMORY_MANAGER
1519 log("[D] EXIT : m_deallocator()");
1523 // ---------------------------------------------------------------------------------------------------------------------------------
1524 // -DOC- The following utilitarian allow you to become proactive in tracking your own memory, or help you narrow in on those tough
1526 // ---------------------------------------------------------------------------------------------------------------------------------
1528 bool m_validateAddress(const void *reportedAddress)
1530 // Just see if the address exists in our allocation routines
1532 return findAllocUnit(reportedAddress) != NULL;
1535 // ---------------------------------------------------------------------------------------------------------------------------------
1537 bool m_validateAllocUnit(const sAllocUnit *allocUnit)
1539 // Make sure the padding is untouched
1541 long *pre = reinterpret_cast<long *>(allocUnit->actualAddress);
1542 long *post = reinterpret_cast<long *>((char *)allocUnit->actualAddress + allocUnit->actualSize - paddingSize * sizeof(long));
1543 bool errorFlag = false;
1544 for (unsigned int i = 0; i < paddingSize; i++, pre++, post++)
1546 if (*pre != (long) prefixPattern)
1548 log("[!] A memory allocation unit was corrupt because of an underrun:");
1549 m_dumpAllocUnit(allocUnit, " ");
1553 // If you hit this assert, then you should know that this allocation unit has been damaged. Something (possibly the
1554 // owner?) has underrun the allocation unit (modified a few bytes prior to the start). You can interrogate the
1555 // variable 'allocUnit' to see statistics and information about this damaged allocation unit.
1556 m_assert(*pre == static_cast<long>(prefixPattern));
1558 if (*post != static_cast<long>(postfixPattern))
1560 log("[!] A memory allocation unit was corrupt because of an overrun:");
1561 m_dumpAllocUnit(allocUnit, " ");
1565 // If you hit this assert, then you should know that this allocation unit has been damaged. Something (possibly the
1566 // owner?) has overrun the allocation unit (modified a few bytes after the end). You can interrogate the variable
1567 // 'allocUnit' to see statistics and information about this damaged allocation unit.
1568 m_assert(*post == static_cast<long>(postfixPattern));
1571 // Return the error status (we invert it, because a return of 'false' means error)
1576 // ---------------------------------------------------------------------------------------------------------------------------------
1578 bool m_validateAllAllocUnits()
1580 // Just go through each allocation unit in the hash table and count the ones that have errors
1582 unsigned int errors = 0;
1583 unsigned int allocCount = 0;
1584 for (unsigned int i = 0; i < hashSize; i++)
1586 sAllocUnit *ptr = hashTable[i];
1590 if (!m_validateAllocUnit(ptr)) errors++;
1595 // Test for hash-table correctness
1597 if (allocCount != stats.totalAllocUnitCount)
1599 log("[!] Memory tracking hash table corrupt!");
1603 // If you hit this assert, then the internal memory (hash table) used by this memory tracking software is damaged! The
1604 // best way to track this down is to use the alwaysLogAll flag in conjunction with STRESS_TEST macro to narrow in on the
1605 // offending code. After running the application with these settings (and hitting this assert again), interrogate the
1606 // memory.log file to find the previous successful operation. The corruption will have occurred between that point and this
1608 m_assert(allocCount == stats.totalAllocUnitCount);
1610 // If you hit this assert, then you've probably already been notified that there was a problem with a allocation unit in a
1611 // prior call to validateAllocUnit(), but this assert is here just to make sure you know about it. :)
1612 m_assert(errors == 0);
1616 if (errors) log("[!] While validting all allocation units, %d allocation unit(s) were found to have problems", errors);
1618 // Return the error status
1623 // ---------------------------------------------------------------------------------------------------------------------------------
1624 // -DOC- Unused RAM calculation routines. Use these to determine how much of your RAM is unused (in bytes)
1625 // ---------------------------------------------------------------------------------------------------------------------------------
1627 unsigned int m_calcUnused(const sAllocUnit *allocUnit)
1629 const unsigned long *ptr = reinterpret_cast<const unsigned long *>(allocUnit->reportedAddress);
1630 unsigned int count = 0;
1632 for (unsigned int i = 0; i < allocUnit->reportedSize; i += sizeof(long), ptr++)
1634 if (*ptr == unusedPattern) count += sizeof(long);
1640 // ---------------------------------------------------------------------------------------------------------------------------------
1642 unsigned int m_calcAllUnused()
1644 // Just go through each allocation unit in the hash table and count the unused RAM
1646 unsigned int total = 0;
1647 for (unsigned int i = 0; i < hashSize; i++)
1649 sAllocUnit *ptr = hashTable[i];
1652 total += m_calcUnused(ptr);
1660 // ---------------------------------------------------------------------------------------------------------------------------------
1661 // -DOC- The following functions are for logging and statistics reporting.
1662 // ---------------------------------------------------------------------------------------------------------------------------------
1664 void m_dumpAllocUnit(const sAllocUnit *allocUnit, const char *prefix)
1666 log("[I] %sAddress (reported): %010p", prefix, allocUnit->reportedAddress);
1667 log("[I] %sAddress (actual) : %010p", prefix, allocUnit->actualAddress);
1668 log("[I] %sSize (reported) : 0x%08X (%s)", prefix, static_cast<unsigned int>(allocUnit->reportedSize), memorySizeString(static_cast<unsigned int>(allocUnit->reportedSize)));
1669 log("[I] %sSize (actual) : 0x%08X (%s)", prefix, static_cast<unsigned int>(allocUnit->actualSize), memorySizeString(static_cast<unsigned int>(allocUnit->actualSize)));
1670 log("[I] %sOwner : %s(%d)::%s", prefix, allocUnit->sourceFile, allocUnit->sourceLine, allocUnit->sourceFunc);
1671 log("[I] %sAllocation type : %s", prefix, allocationTypes[allocUnit->allocationType]);
1672 log("[I] %sAllocation number : %d", prefix, allocUnit->allocationNumber);
1675 // ---------------------------------------------------------------------------------------------------------------------------------
1677 void m_dumpMemoryReport(const char *filename, const bool overwrite)
1679 // Open the report file
1683 if (overwrite) fp = fopen(filename, "w+b");
1684 else fp = fopen(filename, "ab");
1686 // If you hit this assert, then the memory report generator is unable to log information to a file (can't open the file for
1693 static char timeString[25];
1694 memset(timeString, 0, sizeof(timeString));
1695 time_t t = time(NULL);
1696 struct tm *tme = localtime(&t);
1697 fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
1698 fprintf(fp, "| Memory report for: %02d/%02d/%04d %02d:%02d:%02d |\r\n", tme->tm_mon + 1, tme->tm_mday, tme->tm_year + 1900, tme->tm_hour, tme->tm_min, tme->tm_sec);
1699 fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
1700 fprintf(fp, "\r\n");
1701 fprintf(fp, "\r\n");
1705 fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
1706 fprintf(fp, "| T O T A L S |\r\n");
1707 fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
1708 fprintf(fp, " Allocation unit count: %10s\r\n", insertCommas(stats.totalAllocUnitCount));
1709 fprintf(fp, " Reported to application: %s\r\n", memorySizeString(stats.totalReportedMemory));
1710 fprintf(fp, " Actual total memory in use: %s\r\n", memorySizeString(stats.totalActualMemory));
1711 fprintf(fp, " Memory tracking overhead: %s\r\n", memorySizeString(stats.totalActualMemory - stats.totalReportedMemory));
1712 fprintf(fp, "\r\n");
1714 fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
1715 fprintf(fp, "| P E A K S |\r\n");
1716 fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
1717 fprintf(fp, " Allocation unit count: %10s\r\n", insertCommas(stats.peakAllocUnitCount));
1718 fprintf(fp, " Reported to application: %s\r\n", memorySizeString(stats.peakReportedMemory));
1719 fprintf(fp, " Actual: %s\r\n", memorySizeString(stats.peakActualMemory));
1720 fprintf(fp, " Memory tracking overhead: %s\r\n", memorySizeString(stats.peakActualMemory - stats.peakReportedMemory));
1721 fprintf(fp, "\r\n");
1723 fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
1724 fprintf(fp, "| A C C U M U L A T E D |\r\n");
1725 fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
1726 fprintf(fp, " Allocation unit count: %s\r\n", memorySizeString(stats.accumulatedAllocUnitCount));
1727 fprintf(fp, " Reported to application: %s\r\n", memorySizeString(stats.accumulatedReportedMemory));
1728 fprintf(fp, " Actual: %s\r\n", memorySizeString(stats.accumulatedActualMemory));
1729 fprintf(fp, "\r\n");
1731 fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
1732 fprintf(fp, "| U N U S E D |\r\n");
1733 fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
1734 fprintf(fp, " Memory allocated but not in use: %s\r\n", memorySizeString(m_calcAllUnused()));
1735 fprintf(fp, "\r\n");
1737 dumpAllocations(fp);
1742 // ---------------------------------------------------------------------------------------------------------------------------------
1744 sMStats m_getMemoryStatistics()
1749 // ---------------------------------------------------------------------------------------------------------------------------------
1750 // mmgr.cpp - End of file
1751 // ---------------------------------------------------------------------------------------------------------------------------------