2 Copyright (C) 2003, 2010 - Wolfire Games
4 This file is part of Lugaru.
6 Lugaru is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License
8 as published by the Free Software Foundation; either version 2
9 of the License, or (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
15 See the GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 #ifndef _QUATERNIONS_H_
24 #define _QUATERNIONS_H_
32 #include "PhysicsMath.h"
35 /**> Quaternion Structures <**/
36 #define PI 3.14159265355555897932384626
39 #define deg2rad .0174532925
41 //using namespace std;
42 typedef float Matrix_t [4][4];
59 XYZ() : x(0.0f), y(0.0f), z(0.0f) {}
60 inline XYZ operator+(XYZ add);
61 inline XYZ operator-(XYZ add);
62 inline XYZ operator*(float add);
63 inline XYZ operator*(XYZ add);
64 inline XYZ operator/(float add);
65 inline void operator+=(XYZ add);
66 inline void operator-=(XYZ add);
67 inline void operator*=(float add);
68 inline void operator*=(XYZ add);
69 inline void operator/=(float add);
70 inline void operator=(float add);
71 inline void vec(Vector add);
72 inline bool operator==(XYZ add);
75 /*********************> Quaternion Function definition <********/
76 quaternion To_Quat(int Degree_Flag, euler Euler);
77 quaternion To_Quat(angle_axis Ang_Ax);
78 quaternion To_Quat(Matrix_t m);
79 angle_axis Quat_2_AA(quaternion Quat);
80 void Quat_2_Matrix(quaternion Quat, Matrix_t m);
81 quaternion Normalize(quaternion Quat);
82 quaternion Quat_Mult(quaternion q1, quaternion q2);
83 quaternion QNormalize(quaternion Quat);
84 XYZ Quat2Vector(quaternion Quat);
86 inline void CrossProduct(XYZ *P, XYZ *Q, XYZ *V);
87 inline void CrossProduct(XYZ P, XYZ Q, XYZ *V);
88 inline void Normalise(XYZ *vectory);
89 inline float normaldotproduct(XYZ point1, XYZ point2);
90 inline float fast_sqrt (register float arg);
91 bool PointInTriangle(XYZ *p, XYZ normal, XYZ *p1, XYZ *p2, XYZ *p3);
92 bool LineFacet(XYZ p1, XYZ p2, XYZ pa, XYZ pb, XYZ pc, XYZ *p);
93 float LineFacetd(XYZ p1, XYZ p2, XYZ pa, XYZ pb, XYZ pc, XYZ *p);
94 float LineFacetd(XYZ p1, XYZ p2, XYZ pa, XYZ pb, XYZ pc, XYZ n, XYZ *p);
95 float LineFacetd(XYZ *p1, XYZ *p2, XYZ *pa, XYZ *pb, XYZ *pc, XYZ *n, XYZ *p);
96 float LineFacetd(XYZ *p1, XYZ *p2, XYZ *pa, XYZ *pb, XYZ *pc, XYZ *p);
97 bool PointInTriangle(Vector *p, Vector normal, float p11, float p12, float p13, float p21, float p22, float p23, float p31, float p32, float p33);
98 bool LineFacet(Vector p1, Vector p2, Vector pa, Vector pb, Vector pc, Vector *p);
99 inline void ReflectVector(XYZ *vel, const XYZ *n);
100 inline void ReflectVector(XYZ *vel, const XYZ &n);
101 inline XYZ DoRotation(XYZ thePoint, float xang, float yang, float zang);
102 inline XYZ DoRotationRadian(XYZ thePoint, float xang, float yang, float zang);
103 inline float findDistance(XYZ *point1, XYZ *point2);
104 inline float findLength(XYZ *point1);
105 inline float findLengthfast(XYZ *point1);
106 inline float distsq(XYZ *point1, XYZ *point2);
107 inline float distsq(XYZ point1, XYZ point2);
108 inline float distsqflat(XYZ *point1, XYZ *point2);
109 inline float dotproduct(const XYZ *point1, const XYZ *point2);
110 bool sphere_line_intersection (
111 float x1, float y1 , float z1,
112 float x2, float y2 , float z2,
113 float x3, float y3 , float z3, float r );
114 bool sphere_line_intersection (
115 XYZ *p1, XYZ *p2, XYZ *p3, float *r );
116 inline bool DistancePointLine( XYZ *Point, XYZ *LineStart, XYZ *LineEnd, float *Distance, XYZ *Intersection );
119 inline void Normalise(XYZ *vectory)
122 d = fast_sqrt(vectory->x * vectory->x + vectory->y * vectory->y + vectory->z * vectory->z);
131 inline XYZ XYZ::operator+(XYZ add)
141 inline XYZ XYZ::operator-(XYZ add)
151 inline XYZ XYZ::operator*(float add)
160 inline XYZ XYZ::operator*(XYZ add)
169 inline XYZ XYZ::operator/(float add)
178 inline void XYZ::operator+=(XYZ add)
185 inline void XYZ::operator-=(XYZ add)
192 inline void XYZ::operator*=(float add)
199 inline void XYZ::operator*=(XYZ add)
206 inline void XYZ::operator/=(float add)
213 inline void XYZ::operator=(float add)
220 inline void XYZ::vec(Vector add)
227 inline bool XYZ::operator==(XYZ add)
229 if (x == add.x && y == add.y && z == add.z)
234 inline void CrossProduct(XYZ *P, XYZ *Q, XYZ *V)
236 V->x = P->y * Q->z - P->z * Q->y;
237 V->y = P->z * Q->x - P->x * Q->z;
238 V->z = P->x * Q->y - P->y * Q->x;
241 inline void CrossProduct(XYZ P, XYZ Q, XYZ *V)
243 V->x = P.y * Q.z - P.z * Q.y;
244 V->y = P.z * Q.x - P.x * Q.z;
245 V->z = P.x * Q.y - P.y * Q.x;
248 inline float fast_sqrt (register float arg)
251 // Can replace with slower return std::sqrt(arg);
252 register float result;
258 frsqrte result, arg // Calculate Square root
261 // Newton Rhapson iterations.
262 result = result + 0.5 * result * (1.0 - arg * result * result);
263 result = result + 0.5 * result * (1.0 - arg * result * result);
271 inline float normaldotproduct(XYZ point1, XYZ point2)
273 static GLfloat returnvalue;
276 returnvalue = (point1.x * point2.x + point1.y * point2.y + point1.z * point2.z);
280 inline void ReflectVector(XYZ *vel, const XYZ *n)
282 ReflectVector(vel, *n);
285 inline void ReflectVector(XYZ *vel, const XYZ &n)
289 static float dotprod;
291 dotprod = dotproduct(&n, vel);
292 vn.x = n.x * dotprod;
293 vn.y = n.y * dotprod;
294 vn.z = n.z * dotprod;
296 vt.x = vel->x - vn.x;
297 vt.y = vel->y - vn.y;
298 vt.z = vel->z - vn.z;
300 vel->x = vt.x - vn.x;
301 vel->y = vt.y - vn.y;
302 vel->z = vt.z - vn.z;
305 inline float dotproduct(const XYZ *point1, const XYZ *point2)
307 static GLfloat returnvalue;
308 returnvalue = (point1->x * point2->x + point1->y * point2->y + point1->z * point2->z);
312 inline float findDistance(XYZ *point1, XYZ *point2)
314 return(fast_sqrt((point1->x - point2->x) * (point1->x - point2->x) + (point1->y - point2->y) * (point1->y - point2->y) + (point1->z - point2->z) * (point1->z - point2->z)));
317 inline float findLength(XYZ *point1)
319 return(fast_sqrt((point1->x) * (point1->x) + (point1->y) * (point1->y) + (point1->z) * (point1->z)));
323 inline float findLengthfast(XYZ *point1)
325 return((point1->x) * (point1->x) + (point1->y) * (point1->y) + (point1->z) * (point1->z));
328 inline float distsq(XYZ *point1, XYZ *point2)
330 return((point1->x - point2->x) * (point1->x - point2->x) + (point1->y - point2->y) * (point1->y - point2->y) + (point1->z - point2->z) * (point1->z - point2->z));
333 inline float distsq(XYZ point1, XYZ point2)
335 return((point1.x - point2.x) * (point1.x - point2.x) + (point1.y - point2.y) * (point1.y - point2.y) + (point1.z - point2.z) * (point1.z - point2.z));
338 inline float distsqflat(XYZ *point1, XYZ *point2)
340 return((point1->x - point2->x) * (point1->x - point2->x) + (point1->z - point2->z) * (point1->z - point2->z));
343 inline XYZ DoRotation(XYZ thePoint, float xang, float yang, float zang)
361 newpoint.z = thePoint.z * cosf(yang) - thePoint.x * sinf(yang);
362 newpoint.x = thePoint.z * sinf(yang) + thePoint.x * cosf(yang);
363 thePoint.z = newpoint.z;
364 thePoint.x = newpoint.x;
368 newpoint.x = thePoint.x * cosf(zang) - thePoint.y * sinf(zang);
369 newpoint.y = thePoint.y * cosf(zang) + thePoint.x * sinf(zang);
370 thePoint.x = newpoint.x;
371 thePoint.y = newpoint.y;
375 newpoint.y = thePoint.y * cosf(xang) - thePoint.z * sinf(xang);
376 newpoint.z = thePoint.y * sinf(xang) + thePoint.z * cosf(xang);
377 thePoint.z = newpoint.z;
378 thePoint.y = newpoint.y;
384 inline float square( float f )
389 inline bool sphere_line_intersection (
390 float x1, float y1 , float z1,
391 float x2, float y2 , float z2,
392 float x3, float y3 , float z3, float r )
395 // x1,y1,z1 P1 coordinates (point of line)
396 // x2,y2,z2 P2 coordinates (point of line)
397 // x3,y3,z3, r P3 coordinates and radius (sphere)
398 // x,y,z intersection coordinates
400 // This function returns a pointer array which first index indicates
401 // the number of intersection point, followed by coordinate pairs.
403 //~ static float x , y , z;
404 static float a, b, c, /*mu,*/ i ;
406 if (x1 > x3 + r && x2 > x3 + r) return(0);
407 if (x1 < x3 - r && x2 < x3 - r) return(0);
408 if (y1 > y3 + r && y2 > y3 + r) return(0);
409 if (y1 < y3 - r && y2 < y3 - r) return(0);
410 if (z1 > z3 + r && z2 > z3 + r) return(0);
411 if (z1 < z3 - r && z2 < z3 - r) return(0);
412 a = square(x2 - x1) + square(y2 - y1) + square(z2 - z1);
413 b = 2 * ( (x2 - x1) * (x1 - x3)
414 + (y2 - y1) * (y1 - y3)
415 + (z2 - z1) * (z1 - z3) ) ;
416 c = square(x3) + square(y3) +
417 square(z3) + square(x1) +
418 square(y1) + square(z1) -
419 2 * ( x3 * x1 + y3 * y1 + z3 * z1 ) - square(r) ;
420 i = b * b - 4 * a * c ;
429 inline bool sphere_line_intersection (
430 XYZ *p1, XYZ *p2, XYZ *p3, float *r )
433 // x1,p1->y,p1->z P1 coordinates (point of line)
434 // p2->x,p2->y,p2->z P2 coordinates (point of line)
435 // p3->x,p3->y,p3->z, r P3 coordinates and radius (sphere)
436 // x,y,z intersection coordinates
438 // This function returns a pointer array which first index indicates
439 // the number of intersection point, followed by coordinate pairs.
441 //~ static float x , y , z;
442 static float a, b, c, /*mu,*/ i ;
444 if (p1->x > p3->x + *r && p2->x > p3->x + *r) return(0);
445 if (p1->x < p3->x - *r && p2->x < p3->x - *r) return(0);
446 if (p1->y > p3->y + *r && p2->y > p3->y + *r) return(0);
447 if (p1->y < p3->y - *r && p2->y < p3->y - *r) return(0);
448 if (p1->z > p3->z + *r && p2->z > p3->z + *r) return(0);
449 if (p1->z < p3->z - *r && p2->z < p3->z - *r) return(0);
450 a = square(p2->x - p1->x) + square(p2->y - p1->y) + square(p2->z - p1->z);
451 b = 2 * ( (p2->x - p1->x) * (p1->x - p3->x)
452 + (p2->y - p1->y) * (p1->y - p3->y)
453 + (p2->z - p1->z) * (p1->z - p3->z) ) ;
454 c = square(p3->x) + square(p3->y) +
455 square(p3->z) + square(p1->x) +
456 square(p1->y) + square(p1->z) -
457 2 * ( p3->x * p1->x + p3->y * p1->y + p3->z * p1->z ) - square(*r) ;
458 i = b * b - 4 * a * c ;
467 inline XYZ DoRotationRadian(XYZ thePoint, float xang, float yang, float zang)
475 newpoint.z = oldpoint.z * cosf(yang) - oldpoint.x * sinf(yang);
476 newpoint.x = oldpoint.z * sinf(yang) + oldpoint.x * cosf(yang);
477 oldpoint.z = newpoint.z;
478 oldpoint.x = newpoint.x;
482 newpoint.x = oldpoint.x * cosf(zang) - oldpoint.y * sinf(zang);
483 newpoint.y = oldpoint.y * cosf(zang) + oldpoint.x * sinf(zang);
484 oldpoint.x = newpoint.x;
485 oldpoint.y = newpoint.y;
489 newpoint.y = oldpoint.y * cosf(xang) - oldpoint.z * sinf(xang);
490 newpoint.z = oldpoint.y * sinf(xang) + oldpoint.z * cosf(xang);
491 oldpoint.z = newpoint.z;
492 oldpoint.y = newpoint.y;
499 inline bool DistancePointLine( XYZ *Point, XYZ *LineStart, XYZ *LineEnd, float *Distance, XYZ *Intersection )
504 LineMag = findDistance( LineEnd, LineStart );
506 U = ( ( ( Point->x - LineStart->x ) * ( LineEnd->x - LineStart->x ) ) +
507 ( ( Point->y - LineStart->y ) * ( LineEnd->y - LineStart->y ) ) +
508 ( ( Point->z - LineStart->z ) * ( LineEnd->z - LineStart->z ) ) ) /
509 ( LineMag * LineMag );
511 if ( U < 0.0f || U > 1.0f )
512 return 0; // closest point does not fall within the line segment
514 Intersection->x = LineStart->x + U * ( LineEnd->x - LineStart->x );
515 Intersection->y = LineStart->y + U * ( LineEnd->y - LineStart->y );
516 Intersection->z = LineStart->z + U * ( LineEnd->z - LineStart->z );
518 *Distance = findDistance( Point, Intersection );