4 * Copyright (C) 1991-1997, Thomas G. Lane.
5 * Modified 2006-2009 by Guido Vollbeding.
6 * This file is part of the Independent JPEG Group's software.
7 * For conditions of distribution and use, see the accompanying README file.
9 * This file contains Huffman entropy decoding routines.
10 * Both sequential and progressive modes are supported in this single module.
12 * Much of the complexity here has to do with supporting input suspension.
13 * If the data source module demands suspension, we want to be able to back
14 * up to the start of the current MCU. To do this, we copy state variables
15 * into local working storage, and update them back to the permanent
16 * storage only upon successful completion of an MCU.
19 #define JPEG_INTERNALS
24 /* Derived data constructed for each Huffman table */
26 #define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */
29 /* Basic tables: (element [0] of each array is unused) */
30 INT32 maxcode[18]; /* largest code of length k (-1 if none) */
31 /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */
32 INT32 valoffset[17]; /* huffval[] offset for codes of length k */
33 /* valoffset[k] = huffval[] index of 1st symbol of code length k, less
34 * the smallest code of length k; so given a code of length k, the
35 * corresponding symbol is huffval[code + valoffset[k]]
38 /* Link to public Huffman table (needed only in jpeg_huff_decode) */
41 /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of
42 * the input data stream. If the next Huffman code is no more
43 * than HUFF_LOOKAHEAD bits long, we can obtain its length and
44 * the corresponding symbol directly from these tables.
46 int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */
47 UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */
52 * Fetching the next N bits from the input stream is a time-critical operation
53 * for the Huffman decoders. We implement it with a combination of inline
54 * macros and out-of-line subroutines. Note that N (the number of bits
55 * demanded at one time) never exceeds 15 for JPEG use.
57 * We read source bytes into get_buffer and dole out bits as needed.
58 * If get_buffer already contains enough bits, they are fetched in-line
59 * by the macros CHECK_BIT_BUFFER and GET_BITS. When there aren't enough
60 * bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer
61 * as full as possible (not just to the number of bits needed; this
62 * prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer).
63 * Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension.
64 * On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains
65 * at least the requested number of bits --- dummy zeroes are inserted if
69 typedef INT32 bit_buf_type; /* type of bit-extraction buffer */
70 #define BIT_BUF_SIZE 32 /* size of buffer in bits */
72 /* If long is > 32 bits on your machine, and shifting/masking longs is
73 * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE
74 * appropriately should be a win. Unfortunately we can't define the size
75 * with something like #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8)
76 * because not all machines measure sizeof in 8-bit bytes.
79 typedef struct { /* Bitreading state saved across MCUs */
80 bit_buf_type get_buffer; /* current bit-extraction buffer */
81 int bits_left; /* # of unused bits in it */
84 typedef struct { /* Bitreading working state within an MCU */
85 /* Current data source location */
86 /* We need a copy, rather than munging the original, in case of suspension */
87 const JOCTET * next_input_byte; /* => next byte to read from source */
88 size_t bytes_in_buffer; /* # of bytes remaining in source buffer */
89 /* Bit input buffer --- note these values are kept in register variables,
90 * not in this struct, inside the inner loops.
92 bit_buf_type get_buffer; /* current bit-extraction buffer */
93 int bits_left; /* # of unused bits in it */
94 /* Pointer needed by jpeg_fill_bit_buffer. */
95 j_decompress_ptr cinfo; /* back link to decompress master record */
96 } bitread_working_state;
98 /* Macros to declare and load/save bitread local variables. */
99 #define BITREAD_STATE_VARS \
100 register bit_buf_type get_buffer; \
101 register int bits_left; \
102 bitread_working_state br_state
104 #define BITREAD_LOAD_STATE(cinfop,permstate) \
105 br_state.cinfo = cinfop; \
106 br_state.next_input_byte = cinfop->src->next_input_byte; \
107 br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \
108 get_buffer = permstate.get_buffer; \
109 bits_left = permstate.bits_left;
111 #define BITREAD_SAVE_STATE(cinfop,permstate) \
112 cinfop->src->next_input_byte = br_state.next_input_byte; \
113 cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \
114 permstate.get_buffer = get_buffer; \
115 permstate.bits_left = bits_left
118 * These macros provide the in-line portion of bit fetching.
119 * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer
120 * before using GET_BITS, PEEK_BITS, or DROP_BITS.
121 * The variables get_buffer and bits_left are assumed to be locals,
122 * but the state struct might not be (jpeg_huff_decode needs this).
123 * CHECK_BIT_BUFFER(state,n,action);
124 * Ensure there are N bits in get_buffer; if suspend, take action.
127 * val = PEEK_BITS(n);
128 * Fetch next N bits without removing them from the buffer.
130 * Discard next N bits.
131 * The value N should be a simple variable, not an expression, because it
132 * is evaluated multiple times.
135 #define CHECK_BIT_BUFFER(state,nbits,action) \
136 { if (bits_left < (nbits)) { \
137 if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) \
139 get_buffer = (state).get_buffer; bits_left = (state).bits_left; } }
141 #define GET_BITS(nbits) \
142 (((int) (get_buffer >> (bits_left -= (nbits)))) & BIT_MASK(nbits))
144 #define PEEK_BITS(nbits) \
145 (((int) (get_buffer >> (bits_left - (nbits)))) & BIT_MASK(nbits))
147 #define DROP_BITS(nbits) \
148 (bits_left -= (nbits))
152 * Code for extracting next Huffman-coded symbol from input bit stream.
153 * Again, this is time-critical and we make the main paths be macros.
155 * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
156 * without looping. Usually, more than 95% of the Huffman codes will be 8
157 * or fewer bits long. The few overlength codes are handled with a loop,
158 * which need not be inline code.
160 * Notes about the HUFF_DECODE macro:
161 * 1. Near the end of the data segment, we may fail to get enough bits
162 * for a lookahead. In that case, we do it the hard way.
163 * 2. If the lookahead table contains no entry, the next code must be
164 * more than HUFF_LOOKAHEAD bits long.
165 * 3. jpeg_huff_decode returns -1 if forced to suspend.
168 #define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \
169 { register int nb, look; \
170 if (bits_left < HUFF_LOOKAHEAD) { \
171 if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \
172 get_buffer = state.get_buffer; bits_left = state.bits_left; \
173 if (bits_left < HUFF_LOOKAHEAD) { \
174 nb = 1; goto slowlabel; \
177 look = PEEK_BITS(HUFF_LOOKAHEAD); \
178 if ((nb = htbl->look_nbits[look]) != 0) { \
180 result = htbl->look_sym[look]; \
182 nb = HUFF_LOOKAHEAD+1; \
184 if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \
186 get_buffer = state.get_buffer; bits_left = state.bits_left; \
192 * Expanded entropy decoder object for Huffman decoding.
194 * The savable_state subrecord contains fields that change within an MCU,
195 * but must not be updated permanently until we complete the MCU.
199 unsigned int EOBRUN; /* remaining EOBs in EOBRUN */
200 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
203 /* This macro is to work around compilers with missing or broken
204 * structure assignment. You'll need to fix this code if you have
205 * such a compiler and you change MAX_COMPS_IN_SCAN.
208 #ifndef NO_STRUCT_ASSIGN
209 #define ASSIGN_STATE(dest,src) ((dest) = (src))
211 #if MAX_COMPS_IN_SCAN == 4
212 #define ASSIGN_STATE(dest,src) \
213 ((dest).EOBRUN = (src).EOBRUN, \
214 (dest).last_dc_val[0] = (src).last_dc_val[0], \
215 (dest).last_dc_val[1] = (src).last_dc_val[1], \
216 (dest).last_dc_val[2] = (src).last_dc_val[2], \
217 (dest).last_dc_val[3] = (src).last_dc_val[3])
223 struct jpeg_entropy_decoder pub; /* public fields */
225 /* These fields are loaded into local variables at start of each MCU.
226 * In case of suspension, we exit WITHOUT updating them.
228 bitread_perm_state bitstate; /* Bit buffer at start of MCU */
229 savable_state saved; /* Other state at start of MCU */
231 /* These fields are NOT loaded into local working state. */
232 boolean insufficient_data; /* set TRUE after emitting warning */
233 unsigned int restarts_to_go; /* MCUs left in this restart interval */
235 /* Following two fields used only in progressive mode */
237 /* Pointers to derived tables (these workspaces have image lifespan) */
238 d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
240 d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
242 /* Following fields used only in sequential mode */
244 /* Pointers to derived tables (these workspaces have image lifespan) */
245 d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
246 d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
248 /* Precalculated info set up by start_pass for use in decode_mcu: */
250 /* Pointers to derived tables to be used for each block within an MCU */
251 d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
252 d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
253 /* Whether we care about the DC and AC coefficient values for each block */
254 int coef_limit[D_MAX_BLOCKS_IN_MCU];
255 } huff_entropy_decoder;
257 typedef huff_entropy_decoder * huff_entropy_ptr;
260 static const int jpeg_zigzag_order[8][8] = {
261 { 0, 1, 5, 6, 14, 15, 27, 28 },
262 { 2, 4, 7, 13, 16, 26, 29, 42 },
263 { 3, 8, 12, 17, 25, 30, 41, 43 },
264 { 9, 11, 18, 24, 31, 40, 44, 53 },
265 { 10, 19, 23, 32, 39, 45, 52, 54 },
266 { 20, 22, 33, 38, 46, 51, 55, 60 },
267 { 21, 34, 37, 47, 50, 56, 59, 61 },
268 { 35, 36, 48, 49, 57, 58, 62, 63 }
271 static const int jpeg_zigzag_order7[7][7] = {
272 { 0, 1, 5, 6, 14, 15, 27 },
273 { 2, 4, 7, 13, 16, 26, 28 },
274 { 3, 8, 12, 17, 25, 29, 38 },
275 { 9, 11, 18, 24, 30, 37, 39 },
276 { 10, 19, 23, 31, 36, 40, 45 },
277 { 20, 22, 32, 35, 41, 44, 46 },
278 { 21, 33, 34, 42, 43, 47, 48 }
281 static const int jpeg_zigzag_order6[6][6] = {
282 { 0, 1, 5, 6, 14, 15 },
283 { 2, 4, 7, 13, 16, 25 },
284 { 3, 8, 12, 17, 24, 26 },
285 { 9, 11, 18, 23, 27, 32 },
286 { 10, 19, 22, 28, 31, 33 },
287 { 20, 21, 29, 30, 34, 35 }
290 static const int jpeg_zigzag_order5[5][5] = {
293 { 3, 8, 12, 16, 21 },
294 { 9, 11, 17, 20, 22 },
295 { 10, 18, 19, 23, 24 }
298 static const int jpeg_zigzag_order4[4][4] = {
305 static const int jpeg_zigzag_order3[3][3] = {
311 static const int jpeg_zigzag_order2[2][2] = {
318 * Compute the derived values for a Huffman table.
319 * This routine also performs some validation checks on the table.
323 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
324 d_derived_tbl ** pdtbl)
328 int p, i, l, si, numsymbols;
331 unsigned int huffcode[257];
334 /* Note that huffsize[] and huffcode[] are filled in code-length order,
335 * paralleling the order of the symbols themselves in htbl->huffval[].
338 /* Find the input Huffman table */
339 if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
340 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
342 isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
344 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
346 /* Allocate a workspace if we haven't already done so. */
348 *pdtbl = (d_derived_tbl *)
349 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
350 SIZEOF(d_derived_tbl));
352 dtbl->pub = htbl; /* fill in back link */
354 /* Figure C.1: make table of Huffman code length for each symbol */
357 for (l = 1; l <= 16; l++) {
358 i = (int) htbl->bits[l];
359 if (i < 0 || p + i > 256) /* protect against table overrun */
360 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
362 huffsize[p++] = (char) l;
367 /* Figure C.2: generate the codes themselves */
368 /* We also validate that the counts represent a legal Huffman code tree. */
373 while (huffsize[p]) {
374 while (((int) huffsize[p]) == si) {
375 huffcode[p++] = code;
378 /* code is now 1 more than the last code used for codelength si; but
379 * it must still fit in si bits, since no code is allowed to be all ones.
381 if (((INT32) code) >= (((INT32) 1) << si))
382 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
387 /* Figure F.15: generate decoding tables for bit-sequential decoding */
390 for (l = 1; l <= 16; l++) {
392 /* valoffset[l] = huffval[] index of 1st symbol of code length l,
393 * minus the minimum code of length l
395 dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
397 dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
399 dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
402 dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
404 /* Compute lookahead tables to speed up decoding.
405 * First we set all the table entries to 0, indicating "too long";
406 * then we iterate through the Huffman codes that are short enough and
407 * fill in all the entries that correspond to bit sequences starting
411 MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
414 for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
415 for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
416 /* l = current code's length, p = its index in huffcode[] & huffval[]. */
417 /* Generate left-justified code followed by all possible bit sequences */
418 lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
419 for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
420 dtbl->look_nbits[lookbits] = l;
421 dtbl->look_sym[lookbits] = htbl->huffval[p];
427 /* Validate symbols as being reasonable.
428 * For AC tables, we make no check, but accept all byte values 0..255.
429 * For DC tables, we require the symbols to be in range 0..15.
430 * (Tighter bounds could be applied depending on the data depth and mode,
431 * but this is sufficient to ensure safe decoding.)
434 for (i = 0; i < numsymbols; i++) {
435 int sym = htbl->huffval[i];
436 if (sym < 0 || sym > 15)
437 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
444 * Out-of-line code for bit fetching.
445 * Note: current values of get_buffer and bits_left are passed as parameters,
446 * but are returned in the corresponding fields of the state struct.
448 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
449 * of get_buffer to be used. (On machines with wider words, an even larger
450 * buffer could be used.) However, on some machines 32-bit shifts are
451 * quite slow and take time proportional to the number of places shifted.
452 * (This is true with most PC compilers, for instance.) In this case it may
453 * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
454 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
458 #define MIN_GET_BITS 15 /* minimum allowable value */
460 #define MIN_GET_BITS (BIT_BUF_SIZE-7)
465 jpeg_fill_bit_buffer (bitread_working_state * state,
466 register bit_buf_type get_buffer, register int bits_left,
468 /* Load up the bit buffer to a depth of at least nbits */
470 /* Copy heavily used state fields into locals (hopefully registers) */
471 register const JOCTET * next_input_byte = state->next_input_byte;
472 register size_t bytes_in_buffer = state->bytes_in_buffer;
473 j_decompress_ptr cinfo = state->cinfo;
475 /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
476 /* (It is assumed that no request will be for more than that many bits.) */
477 /* We fail to do so only if we hit a marker or are forced to suspend. */
479 if (cinfo->unread_marker == 0) { /* cannot advance past a marker */
480 while (bits_left < MIN_GET_BITS) {
483 /* Attempt to read a byte */
484 if (bytes_in_buffer == 0) {
485 if (! (*cinfo->src->fill_input_buffer) (cinfo))
487 next_input_byte = cinfo->src->next_input_byte;
488 bytes_in_buffer = cinfo->src->bytes_in_buffer;
491 c = GETJOCTET(*next_input_byte++);
493 /* If it's 0xFF, check and discard stuffed zero byte */
495 /* Loop here to discard any padding FF's on terminating marker,
496 * so that we can save a valid unread_marker value. NOTE: we will
497 * accept multiple FF's followed by a 0 as meaning a single FF data
498 * byte. This data pattern is not valid according to the standard.
501 if (bytes_in_buffer == 0) {
502 if (! (*cinfo->src->fill_input_buffer) (cinfo))
504 next_input_byte = cinfo->src->next_input_byte;
505 bytes_in_buffer = cinfo->src->bytes_in_buffer;
508 c = GETJOCTET(*next_input_byte++);
512 /* Found FF/00, which represents an FF data byte */
515 /* Oops, it's actually a marker indicating end of compressed data.
516 * Save the marker code for later use.
517 * Fine point: it might appear that we should save the marker into
518 * bitread working state, not straight into permanent state. But
519 * once we have hit a marker, we cannot need to suspend within the
520 * current MCU, because we will read no more bytes from the data
521 * source. So it is OK to update permanent state right away.
523 cinfo->unread_marker = c;
524 /* See if we need to insert some fake zero bits. */
529 /* OK, load c into get_buffer */
530 get_buffer = (get_buffer << 8) | c;
535 /* We get here if we've read the marker that terminates the compressed
536 * data segment. There should be enough bits in the buffer register
537 * to satisfy the request; if so, no problem.
539 if (nbits > bits_left) {
540 /* Uh-oh. Report corrupted data to user and stuff zeroes into
541 * the data stream, so that we can produce some kind of image.
542 * We use a nonvolatile flag to ensure that only one warning message
543 * appears per data segment.
545 if (! ((huff_entropy_ptr) cinfo->entropy)->insufficient_data) {
546 WARNMS(cinfo, JWRN_HIT_MARKER);
547 ((huff_entropy_ptr) cinfo->entropy)->insufficient_data = TRUE;
549 /* Fill the buffer with zero bits */
550 get_buffer <<= MIN_GET_BITS - bits_left;
551 bits_left = MIN_GET_BITS;
555 /* Unload the local registers */
556 state->next_input_byte = next_input_byte;
557 state->bytes_in_buffer = bytes_in_buffer;
558 state->get_buffer = get_buffer;
559 state->bits_left = bits_left;
566 * Figure F.12: extend sign bit.
567 * On some machines, a shift and sub will be faster than a table lookup.
572 #define BIT_MASK(nbits) ((1<<(nbits))-1)
573 #define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) - ((1<<(s))-1) : (x))
577 #define BIT_MASK(nbits) bmask[nbits]
578 #define HUFF_EXTEND(x,s) ((x) <= bmask[(s) - 1] ? (x) - bmask[s] : (x))
580 static const int bmask[16] = /* bmask[n] is mask for n rightmost bits */
581 { 0, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF,
582 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF };
584 #endif /* AVOID_TABLES */
588 * Out-of-line code for Huffman code decoding.
592 jpeg_huff_decode (bitread_working_state * state,
593 register bit_buf_type get_buffer, register int bits_left,
594 d_derived_tbl * htbl, int min_bits)
596 register int l = min_bits;
599 /* HUFF_DECODE has determined that the code is at least min_bits */
600 /* bits long, so fetch that many bits in one swoop. */
602 CHECK_BIT_BUFFER(*state, l, return -1);
605 /* Collect the rest of the Huffman code one bit at a time. */
606 /* This is per Figure F.16 in the JPEG spec. */
608 while (code > htbl->maxcode[l]) {
610 CHECK_BIT_BUFFER(*state, 1, return -1);
615 /* Unload the local registers */
616 state->get_buffer = get_buffer;
617 state->bits_left = bits_left;
619 /* With garbage input we may reach the sentinel value l = 17. */
622 WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
623 return 0; /* fake a zero as the safest result */
626 return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
631 * Check for a restart marker & resynchronize decoder.
632 * Returns FALSE if must suspend.
636 process_restart (j_decompress_ptr cinfo)
638 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
641 /* Throw away any unused bits remaining in bit buffer; */
642 /* include any full bytes in next_marker's count of discarded bytes */
643 cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
644 entropy->bitstate.bits_left = 0;
646 /* Advance past the RSTn marker */
647 if (! (*cinfo->marker->read_restart_marker) (cinfo))
650 /* Re-initialize DC predictions to 0 */
651 for (ci = 0; ci < cinfo->comps_in_scan; ci++)
652 entropy->saved.last_dc_val[ci] = 0;
653 /* Re-init EOB run count, too */
654 entropy->saved.EOBRUN = 0;
656 /* Reset restart counter */
657 entropy->restarts_to_go = cinfo->restart_interval;
659 /* Reset out-of-data flag, unless read_restart_marker left us smack up
660 * against a marker. In that case we will end up treating the next data
661 * segment as empty, and we can avoid producing bogus output pixels by
662 * leaving the flag set.
664 if (cinfo->unread_marker == 0)
665 entropy->insufficient_data = FALSE;
672 * Huffman MCU decoding.
673 * Each of these routines decodes and returns one MCU's worth of
674 * Huffman-compressed coefficients.
675 * The coefficients are reordered from zigzag order into natural array order,
676 * but are not dequantized.
678 * The i'th block of the MCU is stored into the block pointed to by
679 * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
680 * (Wholesale zeroing is usually a little faster than retail...)
682 * We return FALSE if data source requested suspension. In that case no
683 * changes have been made to permanent state. (Exception: some output
684 * coefficients may already have been assigned. This is harmless for
685 * spectral selection, since we'll just re-assign them on the next call.
686 * Successive approximation AC refinement has to be more careful, however.)
690 * MCU decoding for DC initial scan (either spectral selection,
691 * or first pass of successive approximation).
695 decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
697 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
705 jpeg_component_info * compptr;
707 /* Process restart marker if needed; may have to suspend */
708 if (cinfo->restart_interval) {
709 if (entropy->restarts_to_go == 0)
710 if (! process_restart(cinfo))
714 /* If we've run out of data, just leave the MCU set to zeroes.
715 * This way, we return uniform gray for the remainder of the segment.
717 if (! entropy->insufficient_data) {
719 /* Load up working state */
720 BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
721 ASSIGN_STATE(state, entropy->saved);
723 /* Outer loop handles each block in the MCU */
725 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
726 block = MCU_data[blkn];
727 ci = cinfo->MCU_membership[blkn];
728 compptr = cinfo->cur_comp_info[ci];
729 tbl = entropy->derived_tbls[compptr->dc_tbl_no];
731 /* Decode a single block's worth of coefficients */
733 /* Section F.2.2.1: decode the DC coefficient difference */
734 HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
736 CHECK_BIT_BUFFER(br_state, s, return FALSE);
738 s = HUFF_EXTEND(r, s);
741 /* Convert DC difference to actual value, update last_dc_val */
742 s += state.last_dc_val[ci];
743 state.last_dc_val[ci] = s;
744 /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
745 (*block)[0] = (JCOEF) (s << Al);
748 /* Completed MCU, so update state */
749 BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
750 ASSIGN_STATE(entropy->saved, state);
753 /* Account for restart interval (no-op if not using restarts) */
754 entropy->restarts_to_go--;
761 * MCU decoding for AC initial scan (either spectral selection,
762 * or first pass of successive approximation).
766 decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
768 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
769 register int s, k, r;
772 const int * natural_order;
777 /* Process restart marker if needed; may have to suspend */
778 if (cinfo->restart_interval) {
779 if (entropy->restarts_to_go == 0)
780 if (! process_restart(cinfo))
784 /* If we've run out of data, just leave the MCU set to zeroes.
785 * This way, we return uniform gray for the remainder of the segment.
787 if (! entropy->insufficient_data) {
791 natural_order = cinfo->natural_order;
793 /* Load up working state.
794 * We can avoid loading/saving bitread state if in an EOB run.
796 EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
798 /* There is always only one block per MCU */
800 if (EOBRUN > 0) /* if it's a band of zeroes... */
801 EOBRUN--; /* ...process it now (we do nothing) */
803 BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
805 tbl = entropy->ac_derived_tbl;
807 for (k = cinfo->Ss; k <= Se; k++) {
808 HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
813 CHECK_BIT_BUFFER(br_state, s, return FALSE);
815 s = HUFF_EXTEND(r, s);
816 /* Scale and output coefficient in natural (dezigzagged) order */
817 (*block)[natural_order[k]] = (JCOEF) (s << Al);
819 if (r == 15) { /* ZRL */
820 k += 15; /* skip 15 zeroes in band */
821 } else { /* EOBr, run length is 2^r + appended bits */
823 if (r) { /* EOBr, r > 0 */
824 CHECK_BIT_BUFFER(br_state, r, return FALSE);
828 EOBRUN--; /* this band is processed at this moment */
829 break; /* force end-of-band */
834 BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
837 /* Completed MCU, so update state */
838 entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
841 /* Account for restart interval (no-op if not using restarts) */
842 entropy->restarts_to_go--;
849 * MCU decoding for DC successive approximation refinement scan.
850 * Note: we assume such scans can be multi-component, although the spec
851 * is not very clear on the point.
855 decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
857 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
858 int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
863 /* Process restart marker if needed; may have to suspend */
864 if (cinfo->restart_interval) {
865 if (entropy->restarts_to_go == 0)
866 if (! process_restart(cinfo))
870 /* Not worth the cycles to check insufficient_data here,
871 * since we will not change the data anyway if we read zeroes.
874 /* Load up working state */
875 BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
877 /* Outer loop handles each block in the MCU */
879 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
880 block = MCU_data[blkn];
882 /* Encoded data is simply the next bit of the two's-complement DC value */
883 CHECK_BIT_BUFFER(br_state, 1, return FALSE);
886 /* Note: since we use |=, repeating the assignment later is safe */
889 /* Completed MCU, so update state */
890 BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
892 /* Account for restart interval (no-op if not using restarts) */
893 entropy->restarts_to_go--;
900 * MCU decoding for AC successive approximation refinement scan.
904 decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
906 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
907 register int s, k, r;
910 const int * natural_order;
916 int newnz_pos[DCTSIZE2];
918 /* Process restart marker if needed; may have to suspend */
919 if (cinfo->restart_interval) {
920 if (entropy->restarts_to_go == 0)
921 if (! process_restart(cinfo))
925 /* If we've run out of data, don't modify the MCU.
927 if (! entropy->insufficient_data) {
930 p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
931 m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */
932 natural_order = cinfo->natural_order;
934 /* Load up working state */
935 BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
936 EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
938 /* There is always only one block per MCU */
940 tbl = entropy->ac_derived_tbl;
942 /* If we are forced to suspend, we must undo the assignments to any newly
943 * nonzero coefficients in the block, because otherwise we'd get confused
944 * next time about which coefficients were already nonzero.
945 * But we need not undo addition of bits to already-nonzero coefficients;
946 * instead, we can test the current bit to see if we already did it.
950 /* initialize coefficient loop counter to start of band */
954 for (; k <= Se; k++) {
955 HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
959 if (s != 1) /* size of new coef should always be 1 */
960 WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
961 CHECK_BIT_BUFFER(br_state, 1, goto undoit);
963 s = p1; /* newly nonzero coef is positive */
965 s = m1; /* newly nonzero coef is negative */
968 EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */
970 CHECK_BIT_BUFFER(br_state, r, goto undoit);
974 break; /* rest of block is handled by EOB logic */
976 /* note s = 0 for processing ZRL */
978 /* Advance over already-nonzero coefs and r still-zero coefs,
979 * appending correction bits to the nonzeroes. A correction bit is 1
980 * if the absolute value of the coefficient must be increased.
983 thiscoef = *block + natural_order[k];
984 if (*thiscoef != 0) {
985 CHECK_BIT_BUFFER(br_state, 1, goto undoit);
987 if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
996 break; /* reached target zero coefficient */
1001 int pos = natural_order[k];
1002 /* Output newly nonzero coefficient */
1003 (*block)[pos] = (JCOEF) s;
1004 /* Remember its position in case we have to suspend */
1005 newnz_pos[num_newnz++] = pos;
1011 /* Scan any remaining coefficient positions after the end-of-band
1012 * (the last newly nonzero coefficient, if any). Append a correction
1013 * bit to each already-nonzero coefficient. A correction bit is 1
1014 * if the absolute value of the coefficient must be increased.
1016 for (; k <= Se; k++) {
1017 thiscoef = *block + natural_order[k];
1018 if (*thiscoef != 0) {
1019 CHECK_BIT_BUFFER(br_state, 1, goto undoit);
1021 if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
1030 /* Count one block completed in EOB run */
1034 /* Completed MCU, so update state */
1035 BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
1036 entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
1039 /* Account for restart interval (no-op if not using restarts) */
1040 entropy->restarts_to_go--;
1045 /* Re-zero any output coefficients that we made newly nonzero */
1046 while (num_newnz > 0)
1047 (*block)[newnz_pos[--num_newnz]] = 0;
1054 * Decode one MCU's worth of Huffman-compressed coefficients,
1059 decode_mcu_sub (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
1061 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1062 const int * natural_order;
1065 savable_state state;
1067 /* Process restart marker if needed; may have to suspend */
1068 if (cinfo->restart_interval) {
1069 if (entropy->restarts_to_go == 0)
1070 if (! process_restart(cinfo))
1074 /* If we've run out of data, just leave the MCU set to zeroes.
1075 * This way, we return uniform gray for the remainder of the segment.
1077 if (! entropy->insufficient_data) {
1079 natural_order = cinfo->natural_order;
1082 /* Load up working state */
1083 BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
1084 ASSIGN_STATE(state, entropy->saved);
1086 /* Outer loop handles each block in the MCU */
1088 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
1089 JBLOCKROW block = MCU_data[blkn];
1090 d_derived_tbl * htbl;
1091 register int s, k, r;
1094 /* Decode a single block's worth of coefficients */
1096 /* Section F.2.2.1: decode the DC coefficient difference */
1097 htbl = entropy->dc_cur_tbls[blkn];
1098 HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
1100 htbl = entropy->ac_cur_tbls[blkn];
1102 coef_limit = entropy->coef_limit[blkn];
1104 /* Convert DC difference to actual value, update last_dc_val */
1106 CHECK_BIT_BUFFER(br_state, s, return FALSE);
1108 s = HUFF_EXTEND(r, s);
1110 ci = cinfo->MCU_membership[blkn];
1111 s += state.last_dc_val[ci];
1112 state.last_dc_val[ci] = s;
1113 /* Output the DC coefficient */
1114 (*block)[0] = (JCOEF) s;
1116 /* Section F.2.2.2: decode the AC coefficients */
1117 /* Since zeroes are skipped, output area must be cleared beforehand */
1118 for (; k < coef_limit; k++) {
1119 HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
1126 CHECK_BIT_BUFFER(br_state, s, return FALSE);
1128 s = HUFF_EXTEND(r, s);
1129 /* Output coefficient in natural (dezigzagged) order.
1130 * Note: the extra entries in natural_order[] will save us
1131 * if k > Se, which could happen if the data is corrupted.
1133 (*block)[natural_order[k]] = (JCOEF) s;
1142 CHECK_BIT_BUFFER(br_state, s, return FALSE);
1147 /* Section F.2.2.2: decode the AC coefficients */
1148 /* In this path we just discard the values */
1149 for (; k <= Se; k++) {
1150 HUFF_DECODE(s, br_state, htbl, return FALSE, label3);
1157 CHECK_BIT_BUFFER(br_state, s, return FALSE);
1169 /* Completed MCU, so update state */
1170 BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
1171 ASSIGN_STATE(entropy->saved, state);
1174 /* Account for restart interval (no-op if not using restarts) */
1175 entropy->restarts_to_go--;
1182 * Decode one MCU's worth of Huffman-compressed coefficients,
1187 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
1189 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1192 savable_state state;
1194 /* Process restart marker if needed; may have to suspend */
1195 if (cinfo->restart_interval) {
1196 if (entropy->restarts_to_go == 0)
1197 if (! process_restart(cinfo))
1201 /* If we've run out of data, just leave the MCU set to zeroes.
1202 * This way, we return uniform gray for the remainder of the segment.
1204 if (! entropy->insufficient_data) {
1206 /* Load up working state */
1207 BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
1208 ASSIGN_STATE(state, entropy->saved);
1210 /* Outer loop handles each block in the MCU */
1212 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
1213 JBLOCKROW block = MCU_data[blkn];
1214 d_derived_tbl * htbl;
1215 register int s, k, r;
1218 /* Decode a single block's worth of coefficients */
1220 /* Section F.2.2.1: decode the DC coefficient difference */
1221 htbl = entropy->dc_cur_tbls[blkn];
1222 HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
1224 htbl = entropy->ac_cur_tbls[blkn];
1226 coef_limit = entropy->coef_limit[blkn];
1228 /* Convert DC difference to actual value, update last_dc_val */
1230 CHECK_BIT_BUFFER(br_state, s, return FALSE);
1232 s = HUFF_EXTEND(r, s);
1234 ci = cinfo->MCU_membership[blkn];
1235 s += state.last_dc_val[ci];
1236 state.last_dc_val[ci] = s;
1237 /* Output the DC coefficient */
1238 (*block)[0] = (JCOEF) s;
1240 /* Section F.2.2.2: decode the AC coefficients */
1241 /* Since zeroes are skipped, output area must be cleared beforehand */
1242 for (; k < coef_limit; k++) {
1243 HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
1250 CHECK_BIT_BUFFER(br_state, s, return FALSE);
1252 s = HUFF_EXTEND(r, s);
1253 /* Output coefficient in natural (dezigzagged) order.
1254 * Note: the extra entries in jpeg_natural_order[] will save us
1255 * if k >= DCTSIZE2, which could happen if the data is corrupted.
1257 (*block)[jpeg_natural_order[k]] = (JCOEF) s;
1266 CHECK_BIT_BUFFER(br_state, s, return FALSE);
1271 /* Section F.2.2.2: decode the AC coefficients */
1272 /* In this path we just discard the values */
1273 for (; k < DCTSIZE2; k++) {
1274 HUFF_DECODE(s, br_state, htbl, return FALSE, label3);
1281 CHECK_BIT_BUFFER(br_state, s, return FALSE);
1293 /* Completed MCU, so update state */
1294 BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
1295 ASSIGN_STATE(entropy->saved, state);
1298 /* Account for restart interval (no-op if not using restarts) */
1299 entropy->restarts_to_go--;
1306 * Initialize for a Huffman-compressed scan.
1310 start_pass_huff_decoder (j_decompress_ptr cinfo)
1312 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1313 int ci, blkn, tbl, i;
1314 jpeg_component_info * compptr;
1316 if (cinfo->progressive_mode) {
1317 /* Validate progressive scan parameters */
1318 if (cinfo->Ss == 0) {
1322 /* need not check Ss/Se < 0 since they came from unsigned bytes */
1323 if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
1325 /* AC scans may have only one component */
1326 if (cinfo->comps_in_scan != 1)
1329 if (cinfo->Ah != 0) {
1330 /* Successive approximation refinement scan: must have Al = Ah-1. */
1331 if (cinfo->Ah-1 != cinfo->Al)
1334 if (cinfo->Al > 13) { /* need not check for < 0 */
1335 /* Arguably the maximum Al value should be less than 13 for 8-bit precision,
1336 * but the spec doesn't say so, and we try to be liberal about what we
1337 * accept. Note: large Al values could result in out-of-range DC
1338 * coefficients during early scans, leading to bizarre displays due to
1339 * overflows in the IDCT math. But we won't crash.
1342 ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
1343 cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
1345 /* Update progression status, and verify that scan order is legal.
1346 * Note that inter-scan inconsistencies are treated as warnings
1347 * not fatal errors ... not clear if this is right way to behave.
1349 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1350 int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
1351 int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
1352 if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
1353 WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
1354 for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
1355 int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
1356 if (cinfo->Ah != expected)
1357 WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
1358 coef_bit_ptr[coefi] = cinfo->Al;
1362 /* Select MCU decoding routine */
1363 if (cinfo->Ah == 0) {
1365 entropy->pub.decode_mcu = decode_mcu_DC_first;
1367 entropy->pub.decode_mcu = decode_mcu_AC_first;
1370 entropy->pub.decode_mcu = decode_mcu_DC_refine;
1372 entropy->pub.decode_mcu = decode_mcu_AC_refine;
1375 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1376 compptr = cinfo->cur_comp_info[ci];
1377 /* Make sure requested tables are present, and compute derived tables.
1378 * We may build same derived table more than once, but it's not expensive.
1380 if (cinfo->Ss == 0) {
1381 if (cinfo->Ah == 0) { /* DC refinement needs no table */
1382 tbl = compptr->dc_tbl_no;
1383 jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
1384 & entropy->derived_tbls[tbl]);
1387 tbl = compptr->ac_tbl_no;
1388 jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
1389 & entropy->derived_tbls[tbl]);
1390 /* remember the single active table */
1391 entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
1393 /* Initialize DC predictions to 0 */
1394 entropy->saved.last_dc_val[ci] = 0;
1397 /* Initialize private state variables */
1398 entropy->saved.EOBRUN = 0;
1400 /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
1401 * This ought to be an error condition, but we make it a warning because
1402 * there are some baseline files out there with all zeroes in these bytes.
1404 if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
1405 ((cinfo->is_baseline || cinfo->Se < DCTSIZE2) &&
1406 cinfo->Se != cinfo->lim_Se))
1407 WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
1409 /* Select MCU decoding routine */
1410 /* We retain the hard-coded case for full-size blocks.
1411 * This is not necessary, but it appears that this version is slightly
1412 * more performant in the given implementation.
1413 * With an improved implementation we would prefer a single optimized
1416 if (cinfo->lim_Se != DCTSIZE2-1)
1417 entropy->pub.decode_mcu = decode_mcu_sub;
1419 entropy->pub.decode_mcu = decode_mcu;
1421 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1422 compptr = cinfo->cur_comp_info[ci];
1423 /* Compute derived values for Huffman tables */
1424 /* We may do this more than once for a table, but it's not expensive */
1425 tbl = compptr->dc_tbl_no;
1426 jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
1427 & entropy->dc_derived_tbls[tbl]);
1428 if (cinfo->lim_Se) { /* AC needs no table when not present */
1429 tbl = compptr->ac_tbl_no;
1430 jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
1431 & entropy->ac_derived_tbls[tbl]);
1433 /* Initialize DC predictions to 0 */
1434 entropy->saved.last_dc_val[ci] = 0;
1437 /* Precalculate decoding info for each block in an MCU of this scan */
1438 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
1439 ci = cinfo->MCU_membership[blkn];
1440 compptr = cinfo->cur_comp_info[ci];
1441 /* Precalculate which table to use for each block */
1442 entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
1443 entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
1444 /* Decide whether we really care about the coefficient values */
1445 if (compptr->component_needed) {
1446 ci = compptr->DCT_v_scaled_size;
1447 i = compptr->DCT_h_scaled_size;
1448 switch (cinfo->lim_Se) {
1450 entropy->coef_limit[blkn] = 1;
1453 if (ci <= 0 || ci > 2) ci = 2;
1454 if (i <= 0 || i > 2) i = 2;
1455 entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order2[ci - 1][i - 1];
1458 if (ci <= 0 || ci > 3) ci = 3;
1459 if (i <= 0 || i > 3) i = 3;
1460 entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order3[ci - 1][i - 1];
1463 if (ci <= 0 || ci > 4) ci = 4;
1464 if (i <= 0 || i > 4) i = 4;
1465 entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order4[ci - 1][i - 1];
1468 if (ci <= 0 || ci > 5) ci = 5;
1469 if (i <= 0 || i > 5) i = 5;
1470 entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order5[ci - 1][i - 1];
1473 if (ci <= 0 || ci > 6) ci = 6;
1474 if (i <= 0 || i > 6) i = 6;
1475 entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order6[ci - 1][i - 1];
1478 if (ci <= 0 || ci > 7) ci = 7;
1479 if (i <= 0 || i > 7) i = 7;
1480 entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order7[ci - 1][i - 1];
1483 if (ci <= 0 || ci > 8) ci = 8;
1484 if (i <= 0 || i > 8) i = 8;
1485 entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order[ci - 1][i - 1];
1489 entropy->coef_limit[blkn] = 0;
1494 /* Initialize bitread state variables */
1495 entropy->bitstate.bits_left = 0;
1496 entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
1497 entropy->insufficient_data = FALSE;
1499 /* Initialize restart counter */
1500 entropy->restarts_to_go = cinfo->restart_interval;
1505 * Module initialization routine for Huffman entropy decoding.
1509 jinit_huff_decoder (j_decompress_ptr cinfo)
1511 huff_entropy_ptr entropy;
1514 entropy = (huff_entropy_ptr)
1515 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1516 SIZEOF(huff_entropy_decoder));
1517 cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
1518 entropy->pub.start_pass = start_pass_huff_decoder;
1520 if (cinfo->progressive_mode) {
1521 /* Create progression status table */
1522 int *coef_bit_ptr, ci;
1523 cinfo->coef_bits = (int (*)[DCTSIZE2])
1524 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1525 cinfo->num_components*DCTSIZE2*SIZEOF(int));
1526 coef_bit_ptr = & cinfo->coef_bits[0][0];
1527 for (ci = 0; ci < cinfo->num_components; ci++)
1528 for (i = 0; i < DCTSIZE2; i++)
1529 *coef_bit_ptr++ = -1;
1531 /* Mark derived tables unallocated */
1532 for (i = 0; i < NUM_HUFF_TBLS; i++) {
1533 entropy->derived_tbls[i] = NULL;
1536 /* Mark tables unallocated */
1537 for (i = 0; i < NUM_HUFF_TBLS; i++) {
1538 entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;