]> git.jsancho.org Git - lugaru.git/blob - Dependencies/libjpeg/jdarith.c
Simplify landhard and flip animations
[lugaru.git] / Dependencies / libjpeg / jdarith.c
1 /*
2  * jdarith.c
3  *
4  * Developed 1997-2009 by Guido Vollbeding.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains portable arithmetic entropy decoding routines for JPEG
9  * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
10  *
11  * Both sequential and progressive modes are supported in this single module.
12  *
13  * Suspension is not currently supported in this module.
14  */
15
16 #define JPEG_INTERNALS
17 #include "jinclude.h"
18 #include "jpeglib.h"
19
20
21 /* Expanded entropy decoder object for arithmetic decoding. */
22
23 typedef struct {
24   struct jpeg_entropy_decoder pub; /* public fields */
25
26   INT32 c;       /* C register, base of coding interval + input bit buffer */
27   INT32 a;               /* A register, normalized size of coding interval */
28   int ct;     /* bit shift counter, # of bits left in bit buffer part of C */
29                                                          /* init: ct = -16 */
30                                                          /* run: ct = 0..7 */
31                                                          /* error: ct = -1 */
32   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
33   int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
34
35   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
36
37   /* Pointers to statistics areas (these workspaces have image lifespan) */
38   unsigned char * dc_stats[NUM_ARITH_TBLS];
39   unsigned char * ac_stats[NUM_ARITH_TBLS];
40
41   /* Statistics bin for coding with fixed probability 0.5 */
42   unsigned char fixed_bin[4];
43 } arith_entropy_decoder;
44
45 typedef arith_entropy_decoder * arith_entropy_ptr;
46
47 /* The following two definitions specify the allocation chunk size
48  * for the statistics area.
49  * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
50  * 49 statistics bins for DC, and 245 statistics bins for AC coding.
51  *
52  * We use a compact representation with 1 byte per statistics bin,
53  * thus the numbers directly represent byte sizes.
54  * This 1 byte per statistics bin contains the meaning of the MPS
55  * (more probable symbol) in the highest bit (mask 0x80), and the
56  * index into the probability estimation state machine table
57  * in the lower bits (mask 0x7F).
58  */
59
60 #define DC_STAT_BINS 64
61 #define AC_STAT_BINS 256
62
63
64 LOCAL(int)
65 get_byte (j_decompress_ptr cinfo)
66 /* Read next input byte; we do not support suspension in this module. */
67 {
68   struct jpeg_source_mgr * src = cinfo->src;
69
70   if (src->bytes_in_buffer == 0)
71     if (! (*src->fill_input_buffer) (cinfo))
72       ERREXIT(cinfo, JERR_CANT_SUSPEND);
73   src->bytes_in_buffer--;
74   return GETJOCTET(*src->next_input_byte++);
75 }
76
77
78 /*
79  * The core arithmetic decoding routine (common in JPEG and JBIG).
80  * This needs to go as fast as possible.
81  * Machine-dependent optimization facilities
82  * are not utilized in this portable implementation.
83  * However, this code should be fairly efficient and
84  * may be a good base for further optimizations anyway.
85  *
86  * Return value is 0 or 1 (binary decision).
87  *
88  * Note: I've changed the handling of the code base & bit
89  * buffer register C compared to other implementations
90  * based on the standards layout & procedures.
91  * While it also contains both the actual base of the
92  * coding interval (16 bits) and the next-bits buffer,
93  * the cut-point between these two parts is floating
94  * (instead of fixed) with the bit shift counter CT.
95  * Thus, we also need only one (variable instead of
96  * fixed size) shift for the LPS/MPS decision, and
97  * we can get away with any renormalization update
98  * of C (except for new data insertion, of course).
99  *
100  * I've also introduced a new scheme for accessing
101  * the probability estimation state machine table,
102  * derived from Markus Kuhn's JBIG implementation.
103  */
104
105 LOCAL(int)
106 arith_decode (j_decompress_ptr cinfo, unsigned char *st)
107 {
108   register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
109   register unsigned char nl, nm;
110   register INT32 qe, temp;
111   register int sv, data;
112
113   /* Renormalization & data input per section D.2.6 */
114   while (e->a < 0x8000L) {
115     if (--e->ct < 0) {
116       /* Need to fetch next data byte */
117       if (cinfo->unread_marker)
118         data = 0;               /* stuff zero data */
119       else {
120         data = get_byte(cinfo); /* read next input byte */
121         if (data == 0xFF) {     /* zero stuff or marker code */
122           do data = get_byte(cinfo);
123           while (data == 0xFF); /* swallow extra 0xFF bytes */
124           if (data == 0)
125             data = 0xFF;        /* discard stuffed zero byte */
126           else {
127             /* Note: Different from the Huffman decoder, hitting
128              * a marker while processing the compressed data
129              * segment is legal in arithmetic coding.
130              * The convention is to supply zero data
131              * then until decoding is complete.
132              */
133             cinfo->unread_marker = data;
134             data = 0;
135           }
136         }
137       }
138       e->c = (e->c << 8) | data; /* insert data into C register */
139       if ((e->ct += 8) < 0)      /* update bit shift counter */
140         /* Need more initial bytes */
141         if (++e->ct == 0)
142           /* Got 2 initial bytes -> re-init A and exit loop */
143           e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
144     }
145     e->a <<= 1;
146   }
147
148   /* Fetch values from our compact representation of Table D.2:
149    * Qe values and probability estimation state machine
150    */
151   sv = *st;
152   qe = jpeg_aritab[sv & 0x7F];  /* => Qe_Value */
153   nl = qe & 0xFF; qe >>= 8;     /* Next_Index_LPS + Switch_MPS */
154   nm = qe & 0xFF; qe >>= 8;     /* Next_Index_MPS */
155
156   /* Decode & estimation procedures per sections D.2.4 & D.2.5 */
157   temp = e->a - qe;
158   e->a = temp;
159   temp <<= e->ct;
160   if (e->c >= temp) {
161     e->c -= temp;
162     /* Conditional LPS (less probable symbol) exchange */
163     if (e->a < qe) {
164       e->a = qe;
165       *st = (sv & 0x80) ^ nm;   /* Estimate_after_MPS */
166     } else {
167       e->a = qe;
168       *st = (sv & 0x80) ^ nl;   /* Estimate_after_LPS */
169       sv ^= 0x80;               /* Exchange LPS/MPS */
170     }
171   } else if (e->a < 0x8000L) {
172     /* Conditional MPS (more probable symbol) exchange */
173     if (e->a < qe) {
174       *st = (sv & 0x80) ^ nl;   /* Estimate_after_LPS */
175       sv ^= 0x80;               /* Exchange LPS/MPS */
176     } else {
177       *st = (sv & 0x80) ^ nm;   /* Estimate_after_MPS */
178     }
179   }
180
181   return sv >> 7;
182 }
183
184
185 /*
186  * Check for a restart marker & resynchronize decoder.
187  */
188
189 LOCAL(void)
190 process_restart (j_decompress_ptr cinfo)
191 {
192   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
193   int ci;
194   jpeg_component_info * compptr;
195
196   /* Advance past the RSTn marker */
197   if (! (*cinfo->marker->read_restart_marker) (cinfo))
198     ERREXIT(cinfo, JERR_CANT_SUSPEND);
199
200   /* Re-initialize statistics areas */
201   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
202     compptr = cinfo->cur_comp_info[ci];
203     if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
204       MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
205       /* Reset DC predictions to 0 */
206       entropy->last_dc_val[ci] = 0;
207       entropy->dc_context[ci] = 0;
208     }
209     if ((! cinfo->progressive_mode && cinfo->lim_Se) ||
210         (cinfo->progressive_mode && cinfo->Ss)) {
211       MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
212     }
213   }
214
215   /* Reset arithmetic decoding variables */
216   entropy->c = 0;
217   entropy->a = 0;
218   entropy->ct = -16;    /* force reading 2 initial bytes to fill C */
219
220   /* Reset restart counter */
221   entropy->restarts_to_go = cinfo->restart_interval;
222 }
223
224
225 /*
226  * Arithmetic MCU decoding.
227  * Each of these routines decodes and returns one MCU's worth of
228  * arithmetic-compressed coefficients.
229  * The coefficients are reordered from zigzag order into natural array order,
230  * but are not dequantized.
231  *
232  * The i'th block of the MCU is stored into the block pointed to by
233  * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
234  */
235
236 /*
237  * MCU decoding for DC initial scan (either spectral selection,
238  * or first pass of successive approximation).
239  */
240
241 METHODDEF(boolean)
242 decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
243 {
244   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
245   JBLOCKROW block;
246   unsigned char *st;
247   int blkn, ci, tbl, sign;
248   int v, m;
249
250   /* Process restart marker if needed */
251   if (cinfo->restart_interval) {
252     if (entropy->restarts_to_go == 0)
253       process_restart(cinfo);
254     entropy->restarts_to_go--;
255   }
256
257   if (entropy->ct == -1) return TRUE;   /* if error do nothing */
258
259   /* Outer loop handles each block in the MCU */
260
261   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
262     block = MCU_data[blkn];
263     ci = cinfo->MCU_membership[blkn];
264     tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
265
266     /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
267
268     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
269     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
270
271     /* Figure F.19: Decode_DC_DIFF */
272     if (arith_decode(cinfo, st) == 0)
273       entropy->dc_context[ci] = 0;
274     else {
275       /* Figure F.21: Decoding nonzero value v */
276       /* Figure F.22: Decoding the sign of v */
277       sign = arith_decode(cinfo, st + 1);
278       st += 2; st += sign;
279       /* Figure F.23: Decoding the magnitude category of v */
280       if ((m = arith_decode(cinfo, st)) != 0) {
281         st = entropy->dc_stats[tbl] + 20;       /* Table F.4: X1 = 20 */
282         while (arith_decode(cinfo, st)) {
283           if ((m <<= 1) == 0x8000) {
284             WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
285             entropy->ct = -1;                   /* magnitude overflow */
286             return TRUE;
287           }
288           st += 1;
289         }
290       }
291       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
292       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
293         entropy->dc_context[ci] = 0;               /* zero diff category */
294       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
295         entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
296       else
297         entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
298       v = m;
299       /* Figure F.24: Decoding the magnitude bit pattern of v */
300       st += 14;
301       while (m >>= 1)
302         if (arith_decode(cinfo, st)) v |= m;
303       v += 1; if (sign) v = -v;
304       entropy->last_dc_val[ci] += v;
305     }
306
307     /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
308     (*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al);
309   }
310
311   return TRUE;
312 }
313
314
315 /*
316  * MCU decoding for AC initial scan (either spectral selection,
317  * or first pass of successive approximation).
318  */
319
320 METHODDEF(boolean)
321 decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
322 {
323   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
324   JBLOCKROW block;
325   unsigned char *st;
326   int tbl, sign, k;
327   int v, m;
328   const int * natural_order;
329
330   /* Process restart marker if needed */
331   if (cinfo->restart_interval) {
332     if (entropy->restarts_to_go == 0)
333       process_restart(cinfo);
334     entropy->restarts_to_go--;
335   }
336
337   if (entropy->ct == -1) return TRUE;   /* if error do nothing */
338
339   natural_order = cinfo->natural_order;
340
341   /* There is always only one block per MCU */
342   block = MCU_data[0];
343   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
344
345   /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
346
347   /* Figure F.20: Decode_AC_coefficients */
348   for (k = cinfo->Ss; k <= cinfo->Se; k++) {
349     st = entropy->ac_stats[tbl] + 3 * (k - 1);
350     if (arith_decode(cinfo, st)) break;         /* EOB flag */
351     while (arith_decode(cinfo, st + 1) == 0) {
352       st += 3; k++;
353       if (k > cinfo->Se) {
354         WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
355         entropy->ct = -1;                       /* spectral overflow */
356         return TRUE;
357       }
358     }
359     /* Figure F.21: Decoding nonzero value v */
360     /* Figure F.22: Decoding the sign of v */
361     sign = arith_decode(cinfo, entropy->fixed_bin);
362     st += 2;
363     /* Figure F.23: Decoding the magnitude category of v */
364     if ((m = arith_decode(cinfo, st)) != 0) {
365       if (arith_decode(cinfo, st)) {
366         m <<= 1;
367         st = entropy->ac_stats[tbl] +
368              (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
369         while (arith_decode(cinfo, st)) {
370           if ((m <<= 1) == 0x8000) {
371             WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
372             entropy->ct = -1;                   /* magnitude overflow */
373             return TRUE;
374           }
375           st += 1;
376         }
377       }
378     }
379     v = m;
380     /* Figure F.24: Decoding the magnitude bit pattern of v */
381     st += 14;
382     while (m >>= 1)
383       if (arith_decode(cinfo, st)) v |= m;
384     v += 1; if (sign) v = -v;
385     /* Scale and output coefficient in natural (dezigzagged) order */
386     (*block)[natural_order[k]] = (JCOEF) (v << cinfo->Al);
387   }
388
389   return TRUE;
390 }
391
392
393 /*
394  * MCU decoding for DC successive approximation refinement scan.
395  */
396
397 METHODDEF(boolean)
398 decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
399 {
400   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
401   unsigned char *st;
402   int p1, blkn;
403
404   /* Process restart marker if needed */
405   if (cinfo->restart_interval) {
406     if (entropy->restarts_to_go == 0)
407       process_restart(cinfo);
408     entropy->restarts_to_go--;
409   }
410
411   st = entropy->fixed_bin;      /* use fixed probability estimation */
412   p1 = 1 << cinfo->Al;          /* 1 in the bit position being coded */
413
414   /* Outer loop handles each block in the MCU */
415
416   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
417     /* Encoded data is simply the next bit of the two's-complement DC value */
418     if (arith_decode(cinfo, st))
419       MCU_data[blkn][0][0] |= p1;
420   }
421
422   return TRUE;
423 }
424
425
426 /*
427  * MCU decoding for AC successive approximation refinement scan.
428  */
429
430 METHODDEF(boolean)
431 decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
432 {
433   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
434   JBLOCKROW block;
435   JCOEFPTR thiscoef;
436   unsigned char *st;
437   int tbl, k, kex;
438   int p1, m1;
439   const int * natural_order;
440
441   /* Process restart marker if needed */
442   if (cinfo->restart_interval) {
443     if (entropy->restarts_to_go == 0)
444       process_restart(cinfo);
445     entropy->restarts_to_go--;
446   }
447
448   if (entropy->ct == -1) return TRUE;   /* if error do nothing */
449
450   natural_order = cinfo->natural_order;
451
452   /* There is always only one block per MCU */
453   block = MCU_data[0];
454   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
455
456   p1 = 1 << cinfo->Al;          /* 1 in the bit position being coded */
457   m1 = (-1) << cinfo->Al;       /* -1 in the bit position being coded */
458
459   /* Establish EOBx (previous stage end-of-block) index */
460   for (kex = cinfo->Se; kex > 0; kex--)
461     if ((*block)[natural_order[kex]]) break;
462
463   for (k = cinfo->Ss; k <= cinfo->Se; k++) {
464     st = entropy->ac_stats[tbl] + 3 * (k - 1);
465     if (k > kex)
466       if (arith_decode(cinfo, st)) break;       /* EOB flag */
467     for (;;) {
468       thiscoef = *block + natural_order[k];
469       if (*thiscoef) {                          /* previously nonzero coef */
470         if (arith_decode(cinfo, st + 2)) {
471           if (*thiscoef < 0)
472             *thiscoef += m1;
473           else
474             *thiscoef += p1;
475         }
476         break;
477       }
478       if (arith_decode(cinfo, st + 1)) {        /* newly nonzero coef */
479         if (arith_decode(cinfo, entropy->fixed_bin))
480           *thiscoef = m1;
481         else
482           *thiscoef = p1;
483         break;
484       }
485       st += 3; k++;
486       if (k > cinfo->Se) {
487         WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
488         entropy->ct = -1;                       /* spectral overflow */
489         return TRUE;
490       }
491     }
492   }
493
494   return TRUE;
495 }
496
497
498 /*
499  * Decode one MCU's worth of arithmetic-compressed coefficients.
500  */
501
502 METHODDEF(boolean)
503 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
504 {
505   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
506   jpeg_component_info * compptr;
507   JBLOCKROW block;
508   unsigned char *st;
509   int blkn, ci, tbl, sign, k;
510   int v, m;
511   const int * natural_order;
512
513   /* Process restart marker if needed */
514   if (cinfo->restart_interval) {
515     if (entropy->restarts_to_go == 0)
516       process_restart(cinfo);
517     entropy->restarts_to_go--;
518   }
519
520   if (entropy->ct == -1) return TRUE;   /* if error do nothing */
521
522   natural_order = cinfo->natural_order;
523
524   /* Outer loop handles each block in the MCU */
525
526   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
527     block = MCU_data[blkn];
528     ci = cinfo->MCU_membership[blkn];
529     compptr = cinfo->cur_comp_info[ci];
530
531     /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
532
533     tbl = compptr->dc_tbl_no;
534
535     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
536     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
537
538     /* Figure F.19: Decode_DC_DIFF */
539     if (arith_decode(cinfo, st) == 0)
540       entropy->dc_context[ci] = 0;
541     else {
542       /* Figure F.21: Decoding nonzero value v */
543       /* Figure F.22: Decoding the sign of v */
544       sign = arith_decode(cinfo, st + 1);
545       st += 2; st += sign;
546       /* Figure F.23: Decoding the magnitude category of v */
547       if ((m = arith_decode(cinfo, st)) != 0) {
548         st = entropy->dc_stats[tbl] + 20;       /* Table F.4: X1 = 20 */
549         while (arith_decode(cinfo, st)) {
550           if ((m <<= 1) == 0x8000) {
551             WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
552             entropy->ct = -1;                   /* magnitude overflow */
553             return TRUE;
554           }
555           st += 1;
556         }
557       }
558       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
559       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
560         entropy->dc_context[ci] = 0;               /* zero diff category */
561       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
562         entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
563       else
564         entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
565       v = m;
566       /* Figure F.24: Decoding the magnitude bit pattern of v */
567       st += 14;
568       while (m >>= 1)
569         if (arith_decode(cinfo, st)) v |= m;
570       v += 1; if (sign) v = -v;
571       entropy->last_dc_val[ci] += v;
572     }
573
574     (*block)[0] = (JCOEF) entropy->last_dc_val[ci];
575
576     /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
577
578     tbl = compptr->ac_tbl_no;
579
580     /* Figure F.20: Decode_AC_coefficients */
581     for (k = 1; k <= cinfo->lim_Se; k++) {
582       st = entropy->ac_stats[tbl] + 3 * (k - 1);
583       if (arith_decode(cinfo, st)) break;       /* EOB flag */
584       while (arith_decode(cinfo, st + 1) == 0) {
585         st += 3; k++;
586         if (k > cinfo->lim_Se) {
587           WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
588           entropy->ct = -1;                     /* spectral overflow */
589           return TRUE;
590         }
591       }
592       /* Figure F.21: Decoding nonzero value v */
593       /* Figure F.22: Decoding the sign of v */
594       sign = arith_decode(cinfo, entropy->fixed_bin);
595       st += 2;
596       /* Figure F.23: Decoding the magnitude category of v */
597       if ((m = arith_decode(cinfo, st)) != 0) {
598         if (arith_decode(cinfo, st)) {
599           m <<= 1;
600           st = entropy->ac_stats[tbl] +
601                (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
602           while (arith_decode(cinfo, st)) {
603             if ((m <<= 1) == 0x8000) {
604               WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
605               entropy->ct = -1;                 /* magnitude overflow */
606               return TRUE;
607             }
608             st += 1;
609           }
610         }
611       }
612       v = m;
613       /* Figure F.24: Decoding the magnitude bit pattern of v */
614       st += 14;
615       while (m >>= 1)
616         if (arith_decode(cinfo, st)) v |= m;
617       v += 1; if (sign) v = -v;
618       (*block)[natural_order[k]] = (JCOEF) v;
619     }
620   }
621
622   return TRUE;
623 }
624
625
626 /*
627  * Initialize for an arithmetic-compressed scan.
628  */
629
630 METHODDEF(void)
631 start_pass (j_decompress_ptr cinfo)
632 {
633   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
634   int ci, tbl;
635   jpeg_component_info * compptr;
636
637   if (cinfo->progressive_mode) {
638     /* Validate progressive scan parameters */
639     if (cinfo->Ss == 0) {
640       if (cinfo->Se != 0)
641         goto bad;
642     } else {
643       /* need not check Ss/Se < 0 since they came from unsigned bytes */
644       if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
645         goto bad;
646       /* AC scans may have only one component */
647       if (cinfo->comps_in_scan != 1)
648         goto bad;
649     }
650     if (cinfo->Ah != 0) {
651       /* Successive approximation refinement scan: must have Al = Ah-1. */
652       if (cinfo->Ah-1 != cinfo->Al)
653         goto bad;
654     }
655     if (cinfo->Al > 13) {       /* need not check for < 0 */
656       bad:
657       ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
658                cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
659     }
660     /* Update progression status, and verify that scan order is legal.
661      * Note that inter-scan inconsistencies are treated as warnings
662      * not fatal errors ... not clear if this is right way to behave.
663      */
664     for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
665       int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
666       int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
667       if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
668         WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
669       for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
670         int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
671         if (cinfo->Ah != expected)
672           WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
673         coef_bit_ptr[coefi] = cinfo->Al;
674       }
675     }
676     /* Select MCU decoding routine */
677     if (cinfo->Ah == 0) {
678       if (cinfo->Ss == 0)
679         entropy->pub.decode_mcu = decode_mcu_DC_first;
680       else
681         entropy->pub.decode_mcu = decode_mcu_AC_first;
682     } else {
683       if (cinfo->Ss == 0)
684         entropy->pub.decode_mcu = decode_mcu_DC_refine;
685       else
686         entropy->pub.decode_mcu = decode_mcu_AC_refine;
687     }
688   } else {
689     /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
690      * This ought to be an error condition, but we make it a warning.
691      */
692     if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
693         (cinfo->Se < DCTSIZE2 && cinfo->Se != cinfo->lim_Se))
694       WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
695     /* Select MCU decoding routine */
696     entropy->pub.decode_mcu = decode_mcu;
697   }
698
699   /* Allocate & initialize requested statistics areas */
700   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
701     compptr = cinfo->cur_comp_info[ci];
702     if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
703       tbl = compptr->dc_tbl_no;
704       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
705         ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
706       if (entropy->dc_stats[tbl] == NULL)
707         entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
708           ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
709       MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
710       /* Initialize DC predictions to 0 */
711       entropy->last_dc_val[ci] = 0;
712       entropy->dc_context[ci] = 0;
713     }
714     if ((! cinfo->progressive_mode && cinfo->lim_Se) ||
715         (cinfo->progressive_mode && cinfo->Ss)) {
716       tbl = compptr->ac_tbl_no;
717       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
718         ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
719       if (entropy->ac_stats[tbl] == NULL)
720         entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
721           ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
722       MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
723     }
724   }
725
726   /* Initialize arithmetic decoding variables */
727   entropy->c = 0;
728   entropy->a = 0;
729   entropy->ct = -16;    /* force reading 2 initial bytes to fill C */
730
731   /* Initialize restart counter */
732   entropy->restarts_to_go = cinfo->restart_interval;
733 }
734
735
736 /*
737  * Module initialization routine for arithmetic entropy decoding.
738  */
739
740 GLOBAL(void)
741 jinit_arith_decoder (j_decompress_ptr cinfo)
742 {
743   arith_entropy_ptr entropy;
744   int i;
745
746   entropy = (arith_entropy_ptr)
747     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
748                                 SIZEOF(arith_entropy_decoder));
749   cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
750   entropy->pub.start_pass = start_pass;
751
752   /* Mark tables unallocated */
753   for (i = 0; i < NUM_ARITH_TBLS; i++) {
754     entropy->dc_stats[i] = NULL;
755     entropy->ac_stats[i] = NULL;
756   }
757
758   /* Initialize index for fixed probability estimation */
759   entropy->fixed_bin[0] = 113;
760
761   if (cinfo->progressive_mode) {
762     /* Create progression status table */
763     int *coef_bit_ptr, ci;
764     cinfo->coef_bits = (int (*)[DCTSIZE2])
765       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
766                                   cinfo->num_components*DCTSIZE2*SIZEOF(int));
767     coef_bit_ptr = & cinfo->coef_bits[0][0];
768     for (ci = 0; ci < cinfo->num_components; ci++) 
769       for (i = 0; i < DCTSIZE2; i++)
770         *coef_bit_ptr++ = -1;
771   }
772 }