2 * SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
3 * Copyright (C) 1991-2000 Silicon Graphics, Inc. All Rights Reserved.
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice including the dates of first publication and
13 * either this permission notice or a reference to
14 * http://oss.sgi.com/projects/FreeB/
15 * shall be included in all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * SILICON GRAPHICS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
22 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
25 * Except as contained in this notice, the name of Silicon Graphics, Inc.
26 * shall not be used in advertising or otherwise to promote the sale, use or
27 * other dealings in this Software without prior written authorization from
28 * Silicon Graphics, Inc.
31 ** Author: Eric Veach, July 1994.
45 /* This structure remembers the information we need about a primitive
46 * to be able to render it later, once we have determined which
47 * primitive is able to use the most triangles.
50 long size; /* number of triangles used */
51 GLUhalfEdge *eStart; /* edge where this primitive starts */
52 void (*render)(GLUtesselator *, GLUhalfEdge *, long);
53 /* routine to render this primitive */
56 static struct FaceCount MaximumFan( GLUhalfEdge *eOrig );
57 static struct FaceCount MaximumStrip( GLUhalfEdge *eOrig );
59 static void RenderFan( GLUtesselator *tess, GLUhalfEdge *eStart, long size );
60 static void RenderStrip( GLUtesselator *tess, GLUhalfEdge *eStart, long size );
61 static void RenderTriangle( GLUtesselator *tess, GLUhalfEdge *eStart,
64 static void RenderMaximumFaceGroup( GLUtesselator *tess, GLUface *fOrig );
65 static void RenderLonelyTriangles( GLUtesselator *tess, GLUface *head );
69 /************************ Strips and Fans decomposition ******************/
71 /* __gl_renderMesh( tess, mesh ) takes a mesh and breaks it into triangle
72 * fans, strips, and separate triangles. A substantial effort is made
73 * to use as few rendering primitives as possible (ie. to make the fans
74 * and strips as large as possible).
76 * The rendering output is provided as callbacks (see the api).
78 void __gl_renderMesh( GLUtesselator *tess, GLUmesh *mesh )
82 /* Make a list of separate triangles so we can render them all at once */
83 tess->lonelyTriList = NULL;
85 for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
88 for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
90 /* We examine all faces in an arbitrary order. Whenever we find
91 * an unprocessed face F, we output a group of faces including F
92 * whose size is maximum.
94 if( f->inside && ! f->marked ) {
95 RenderMaximumFaceGroup( tess, f );
99 if( tess->lonelyTriList != NULL ) {
100 RenderLonelyTriangles( tess, tess->lonelyTriList );
101 tess->lonelyTriList = NULL;
106 static void RenderMaximumFaceGroup( GLUtesselator *tess, GLUface *fOrig )
108 /* We want to find the largest triangle fan or strip of unmarked faces
109 * which includes the given face fOrig. There are 3 possible fans
110 * passing through fOrig (one centered at each vertex), and 3 possible
111 * strips (one for each CCW permutation of the vertices). Our strategy
112 * is to try all of these, and take the primitive which uses the most
113 * triangles (a greedy approach).
115 GLUhalfEdge *e = fOrig->anEdge;
116 struct FaceCount max, newFace;
120 max.render = &RenderTriangle;
122 if( ! tess->flagBoundary ) {
123 newFace = MaximumFan( e ); if( newFace.size > max.size ) { max = newFace; }
124 newFace = MaximumFan( e->Lnext ); if( newFace.size > max.size ) { max = newFace; }
125 newFace = MaximumFan( e->Lprev ); if( newFace.size > max.size ) { max = newFace; }
127 newFace = MaximumStrip( e ); if( newFace.size > max.size ) { max = newFace; }
128 newFace = MaximumStrip( e->Lnext ); if( newFace.size > max.size ) { max = newFace; }
129 newFace = MaximumStrip( e->Lprev ); if( newFace.size > max.size ) { max = newFace; }
131 (*(max.render))( tess, max.eStart, max.size );
135 /* Macros which keep track of faces we have marked temporarily, and allow
136 * us to backtrack when necessary. With triangle fans, this is not
137 * really necessary, since the only awkward case is a loop of triangles
138 * around a single origin vertex. However with strips the situation is
139 * more complicated, and we need a general tracking method like the
142 #define Marked(f) (! (f)->inside || (f)->marked)
144 #define AddToTrail(f,t) ((f)->trail = (t), (t) = (f), (f)->marked = TRUE)
146 #define FreeTrail(t) if( 1 ) { \
147 while( (t) != NULL ) { \
148 (t)->marked = FALSE; t = (t)->trail; \
150 } else /* absorb trailing semicolon */
154 static struct FaceCount MaximumFan( GLUhalfEdge *eOrig )
156 /* eOrig->Lface is the face we want to render. We want to find the size
157 * of a maximal fan around eOrig->Org. To do this we just walk around
158 * the origin vertex as far as possible in both directions.
160 struct FaceCount newFace = { 0, NULL, &RenderFan };
161 GLUface *trail = NULL;
164 for( e = eOrig; ! Marked( e->Lface ); e = e->Onext ) {
165 AddToTrail( e->Lface, trail );
168 for( e = eOrig; ! Marked( e->Rface ); e = e->Oprev ) {
169 AddToTrail( e->Rface, trail );
179 #define IsEven(n) (((n) & 1) == 0)
181 static struct FaceCount MaximumStrip( GLUhalfEdge *eOrig )
183 /* Here we are looking for a maximal strip that contains the vertices
184 * eOrig->Org, eOrig->Dst, eOrig->Lnext->Dst (in that order or the
185 * reverse, such that all triangles are oriented CCW).
187 * Again we walk forward and backward as far as possible. However for
188 * strips there is a twist: to get CCW orientations, there must be
189 * an *even* number of triangles in the strip on one side of eOrig.
190 * We walk the strip starting on a side with an even number of triangles;
191 * if both side have an odd number, we are forced to shorten one side.
193 struct FaceCount newFace = { 0, NULL, &RenderStrip };
194 long headSize = 0, tailSize = 0;
195 GLUface *trail = NULL;
196 GLUhalfEdge *e, *eTail, *eHead;
198 for( e = eOrig; ! Marked( e->Lface ); ++tailSize, e = e->Onext ) {
199 AddToTrail( e->Lface, trail );
202 if( Marked( e->Lface )) break;
203 AddToTrail( e->Lface, trail );
207 for( e = eOrig; ! Marked( e->Rface ); ++headSize, e = e->Dnext ) {
208 AddToTrail( e->Rface, trail );
211 if( Marked( e->Rface )) break;
212 AddToTrail( e->Rface, trail );
216 newFace.size = tailSize + headSize;
217 if( IsEven( tailSize )) {
218 newFace.eStart = eTail->Sym;
219 } else if( IsEven( headSize )) {
220 newFace.eStart = eHead;
222 /* Both sides have odd length, we must shorten one of them. In fact,
223 * we must start from eHead to guarantee inclusion of eOrig->Lface.
226 newFace.eStart = eHead->Onext;
234 static void RenderTriangle( GLUtesselator *tess, GLUhalfEdge *e, long size )
236 /* Just add the triangle to a triangle list, so we can render all
237 * the separate triangles at once.
240 AddToTrail( e->Lface, tess->lonelyTriList );
244 static void RenderLonelyTriangles( GLUtesselator *tess, GLUface *f )
246 /* Now we render all the separate triangles which could not be
247 * grouped into a triangle fan or strip.
251 int edgeState = -1; /* force edge state output for first vertex */
253 CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLES );
255 for( ; f != NULL; f = f->trail ) {
256 /* Loop once for each edge (there will always be 3 edges) */
260 if( tess->flagBoundary ) {
261 /* Set the "edge state" to TRUE just before we output the
262 * first vertex of each edge on the polygon boundary.
264 newState = ! e->Rface->inside;
265 if( edgeState != newState ) {
266 edgeState = newState;
267 CALL_EDGE_FLAG_OR_EDGE_FLAG_DATA( edgeState );
270 CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
273 } while( e != f->anEdge );
275 CALL_END_OR_END_DATA();
279 static void RenderFan( GLUtesselator *tess, GLUhalfEdge *e, long size )
281 /* Render as many CCW triangles as possible in a fan starting from
282 * edge "e". The fan *should* contain exactly "size" triangles
283 * (otherwise we've goofed up somewhere).
285 CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLE_FAN );
286 CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
287 CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
289 while( ! Marked( e->Lface )) {
290 e->Lface->marked = TRUE;
293 CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
297 CALL_END_OR_END_DATA();
301 static void RenderStrip( GLUtesselator *tess, GLUhalfEdge *e, long size )
303 /* Render as many CCW triangles as possible in a strip starting from
304 * edge "e". The strip *should* contain exactly "size" triangles
305 * (otherwise we've goofed up somewhere).
307 CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLE_STRIP );
308 CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
309 CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
311 while( ! Marked( e->Lface )) {
312 e->Lface->marked = TRUE;
315 CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
316 if( Marked( e->Lface )) break;
318 e->Lface->marked = TRUE;
321 CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
325 CALL_END_OR_END_DATA();
329 /************************ Boundary contour decomposition ******************/
331 /* __gl_renderBoundary( tess, mesh ) takes a mesh, and outputs one
332 * contour for each face marked "inside". The rendering output is
333 * provided as callbacks (see the api).
335 void __gl_renderBoundary( GLUtesselator *tess, GLUmesh *mesh )
340 for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
342 CALL_BEGIN_OR_BEGIN_DATA( GL_LINE_LOOP );
345 CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
347 } while( e != f->anEdge );
348 CALL_END_OR_END_DATA();
354 /************************ Quick-and-dirty decomposition ******************/
356 #define SIGN_INCONSISTENT 2
358 static int ComputeNormal( GLUtesselator *tess, GLdouble norm[3], int check )
360 * If check==FALSE, we compute the polygon normal and place it in norm[].
361 * If check==TRUE, we check that each triangle in the fan from v0 has a
362 * consistent orientation with respect to norm[]. If triangles are
363 * consistently oriented CCW, return 1; if CW, return -1; if all triangles
364 * are degenerate return 0; otherwise (no consistent orientation) return
368 CachedVertex *v0 = tess->cache;
369 CachedVertex *vn = v0 + tess->cacheCount;
371 GLdouble dot, xc, yc, zc, xp, yp, zp, n[3];
374 /* Find the polygon normal. It is important to get a reasonable
375 * normal even when the polygon is self-intersecting (eg. a bowtie).
376 * Otherwise, the computed normal could be very tiny, but perpendicular
377 * to the true plane of the polygon due to numerical noise. Then all
378 * the triangles would appear to be degenerate and we would incorrectly
379 * decompose the polygon as a fan (or simply not render it at all).
381 * We use a sum-of-triangles normal algorithm rather than the more
382 * efficient sum-of-trapezoids method (used in CheckOrientation()
383 * in normal.c). This lets us explicitly reverse the signed area
384 * of some triangles to get a reasonable normal in the self-intersecting
388 norm[0] = norm[1] = norm[2] = 0.0;
392 xc = vc->coords[0] - v0->coords[0];
393 yc = vc->coords[1] - v0->coords[1];
394 zc = vc->coords[2] - v0->coords[2];
396 xp = xc; yp = yc; zp = zc;
397 xc = vc->coords[0] - v0->coords[0];
398 yc = vc->coords[1] - v0->coords[1];
399 zc = vc->coords[2] - v0->coords[2];
401 /* Compute (vp - v0) cross (vc - v0) */
402 n[0] = yp*zc - zp*yc;
403 n[1] = zp*xc - xp*zc;
404 n[2] = xp*yc - yp*xc;
406 dot = n[0]*norm[0] + n[1]*norm[1] + n[2]*norm[2];
408 /* Reverse the contribution of back-facing triangles to get
409 * a reasonable normal for self-intersecting polygons (see above)
412 norm[0] += n[0]; norm[1] += n[1]; norm[2] += n[2];
414 norm[0] -= n[0]; norm[1] -= n[1]; norm[2] -= n[2];
416 } else if( dot != 0 ) {
417 /* Check the new orientation for consistency with previous triangles */
419 if( sign < 0 ) return SIGN_INCONSISTENT;
422 if( sign > 0 ) return SIGN_INCONSISTENT;
430 /* __gl_renderCache( tess ) takes a single contour and tries to render it
431 * as a triangle fan. This handles convex polygons, as well as some
432 * non-convex polygons if we get lucky.
434 * Returns TRUE if the polygon was successfully rendered. The rendering
435 * output is provided as callbacks (see the api).
437 GLboolean __gl_renderCache( GLUtesselator *tess )
439 CachedVertex *v0 = tess->cache;
440 CachedVertex *vn = v0 + tess->cacheCount;
445 if( tess->cacheCount < 3 ) {
446 /* Degenerate contour -- no output */
450 norm[0] = tess->normal[0];
451 norm[1] = tess->normal[1];
452 norm[2] = tess->normal[2];
453 if( norm[0] == 0 && norm[1] == 0 && norm[2] == 0 ) {
454 ComputeNormal( tess, norm, FALSE );
457 sign = ComputeNormal( tess, norm, TRUE );
458 if( sign == SIGN_INCONSISTENT ) {
459 /* Fan triangles did not have a consistent orientation */
463 /* All triangles were degenerate */
467 /* Make sure we do the right thing for each winding rule */
468 switch( tess->windingRule ) {
469 case GLU_TESS_WINDING_ODD:
470 case GLU_TESS_WINDING_NONZERO:
472 case GLU_TESS_WINDING_POSITIVE:
473 if( sign < 0 ) return TRUE;
475 case GLU_TESS_WINDING_NEGATIVE:
476 if( sign > 0 ) return TRUE;
478 case GLU_TESS_WINDING_ABS_GEQ_TWO:
482 CALL_BEGIN_OR_BEGIN_DATA( tess->boundaryOnly ? GL_LINE_LOOP
483 : (tess->cacheCount > 3) ? GL_TRIANGLE_FAN
486 CALL_VERTEX_OR_VERTEX_DATA( v0->data );
488 for( vc = v0+1; vc < vn; ++vc ) {
489 CALL_VERTEX_OR_VERTEX_DATA( vc->data );
492 for( vc = vn-1; vc > v0; --vc ) {
493 CALL_VERTEX_OR_VERTEX_DATA( vc->data );
496 CALL_END_OR_END_DATA();