2 * SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
3 * Copyright (C) 1991-2000 Silicon Graphics, Inc. All Rights Reserved.
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice including the dates of first publication and
13 * either this permission notice or a reference to
14 * http://oss.sgi.com/projects/FreeB/
15 * shall be included in all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * SILICON GRAPHICS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
22 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
25 * Except as contained in this notice, the name of Silicon Graphics, Inc.
26 * shall not be used in advertising or otherwise to promote the sale, use or
27 * other dealings in this Software without prior written authorization from
28 * Silicon Graphics, Inc.
31 ** Author: Eric Veach, July 1994.
45 #define Dot(u,v) (u[0]*v[0] + u[1]*v[1] + u[2]*v[2])
48 static void Normalize( GLdouble v[3] )
50 GLdouble len = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
61 #define ABS(x) ((x) < 0 ? -(x) : (x))
63 static int LongAxis( GLdouble v[3] )
67 if( ABS(v[1]) > ABS(v[0]) ) { i = 1; }
68 if( ABS(v[2]) > ABS(v[i]) ) { i = 2; }
72 static void ComputeNormal( GLUtesselator *tess, GLdouble norm[3] )
74 GLUvertex *v, *v1, *v2;
75 GLdouble c, tLen2, maxLen2;
76 GLdouble maxVal[3], minVal[3], d1[3], d2[3], tNorm[3];
77 GLUvertex *maxVert[3], *minVert[3];
78 GLUvertex *vHead = &tess->mesh->vHead;
81 maxVal[0] = maxVal[1] = maxVal[2] = -2 * GLU_TESS_MAX_COORD;
82 minVal[0] = minVal[1] = minVal[2] = 2 * GLU_TESS_MAX_COORD;
84 for( v = vHead->next; v != vHead; v = v->next ) {
85 for( i = 0; i < 3; ++i ) {
87 if( c < minVal[i] ) { minVal[i] = c; minVert[i] = v; }
88 if( c > maxVal[i] ) { maxVal[i] = c; maxVert[i] = v; }
92 /* Find two vertices separated by at least 1/sqrt(3) of the maximum
93 * distance between any two vertices
96 if( maxVal[1] - minVal[1] > maxVal[0] - minVal[0] ) { i = 1; }
97 if( maxVal[2] - minVal[2] > maxVal[i] - minVal[i] ) { i = 2; }
98 if( minVal[i] >= maxVal[i] ) {
99 /* All vertices are the same -- normal doesn't matter */
100 norm[0] = 0; norm[1] = 0; norm[2] = 1;
104 /* Look for a third vertex which forms the triangle with maximum area
105 * (Length of normal == twice the triangle area)
110 d1[0] = v1->coords[0] - v2->coords[0];
111 d1[1] = v1->coords[1] - v2->coords[1];
112 d1[2] = v1->coords[2] - v2->coords[2];
113 for( v = vHead->next; v != vHead; v = v->next ) {
114 d2[0] = v->coords[0] - v2->coords[0];
115 d2[1] = v->coords[1] - v2->coords[1];
116 d2[2] = v->coords[2] - v2->coords[2];
117 tNorm[0] = d1[1]*d2[2] - d1[2]*d2[1];
118 tNorm[1] = d1[2]*d2[0] - d1[0]*d2[2];
119 tNorm[2] = d1[0]*d2[1] - d1[1]*d2[0];
120 tLen2 = tNorm[0]*tNorm[0] + tNorm[1]*tNorm[1] + tNorm[2]*tNorm[2];
121 if( tLen2 > maxLen2 ) {
130 /* All points lie on a single line -- any decent normal will do */
131 norm[0] = norm[1] = norm[2] = 0;
132 norm[LongAxis(d1)] = 1;
137 static void CheckOrientation( GLUtesselator *tess )
140 GLUface *f, *fHead = &tess->mesh->fHead;
141 GLUvertex *v, *vHead = &tess->mesh->vHead;
144 /* When we compute the normal automatically, we choose the orientation
145 * so that the the sum of the signed areas of all contours is non-negative.
148 for( f = fHead->next; f != fHead; f = f->next ) {
150 if( e->winding <= 0 ) continue;
152 area += (e->Org->s - e->Dst->s) * (e->Org->t + e->Dst->t);
154 } while( e != f->anEdge );
157 /* Reverse the orientation by flipping all the t-coordinates */
158 for( v = vHead->next; v != vHead; v = v->next ) {
161 tess->tUnit[0] = - tess->tUnit[0];
162 tess->tUnit[1] = - tess->tUnit[1];
163 tess->tUnit[2] = - tess->tUnit[2];
167 #ifdef FOR_TRITE_TEST_PROGRAM
169 extern int RandomSweep;
170 #define S_UNIT_X (RandomSweep ? (2*drand48()-1) : 1.0)
171 #define S_UNIT_Y (RandomSweep ? (2*drand48()-1) : 0.0)
173 #if defined(SLANTED_SWEEP)
174 /* The "feature merging" is not intended to be complete. There are
175 * special cases where edges are nearly parallel to the sweep line
176 * which are not implemented. The algorithm should still behave
177 * robustly (ie. produce a reasonable tesselation) in the presence
178 * of such edges, however it may miss features which could have been
179 * merged. We could minimize this effect by choosing the sweep line
180 * direction to be something unusual (ie. not parallel to one of the
183 #define S_UNIT_X 0.50941539564955385 /* Pre-normalized */
184 #define S_UNIT_Y 0.86052074622010633
191 /* Determine the polygon normal and project vertices onto the plane
194 void __gl_projectPolygon( GLUtesselator *tess )
196 GLUvertex *v, *vHead = &tess->mesh->vHead;
198 GLdouble *sUnit, *tUnit;
199 int i, computedNormal = FALSE;
201 norm[0] = tess->normal[0];
202 norm[1] = tess->normal[1];
203 norm[2] = tess->normal[2];
204 if( norm[0] == 0 && norm[1] == 0 && norm[2] == 0 ) {
205 ComputeNormal( tess, norm );
206 computedNormal = TRUE;
210 i = LongAxis( norm );
212 #if defined(FOR_TRITE_TEST_PROGRAM) || defined(TRUE_PROJECT)
213 /* Choose the initial sUnit vector to be approximately perpendicular
219 sUnit[(i+1)%3] = S_UNIT_X;
220 sUnit[(i+2)%3] = S_UNIT_Y;
222 /* Now make it exactly perpendicular */
223 w = Dot( sUnit, norm );
224 sUnit[0] -= w * norm[0];
225 sUnit[1] -= w * norm[1];
226 sUnit[2] -= w * norm[2];
229 /* Choose tUnit so that (sUnit,tUnit,norm) form a right-handed frame */
230 tUnit[0] = norm[1]*sUnit[2] - norm[2]*sUnit[1];
231 tUnit[1] = norm[2]*sUnit[0] - norm[0]*sUnit[2];
232 tUnit[2] = norm[0]*sUnit[1] - norm[1]*sUnit[0];
235 /* Project perpendicular to a coordinate axis -- better numerically */
237 sUnit[(i+1)%3] = S_UNIT_X;
238 sUnit[(i+2)%3] = S_UNIT_Y;
241 tUnit[(i+1)%3] = (norm[i] > 0) ? -S_UNIT_Y : S_UNIT_Y;
242 tUnit[(i+2)%3] = (norm[i] > 0) ? S_UNIT_X : -S_UNIT_X;
245 /* Project the vertices onto the sweep plane */
246 for( v = vHead->next; v != vHead; v = v->next ) {
247 v->s = Dot( v->coords, sUnit );
248 v->t = Dot( v->coords, tUnit );
250 if( computedNormal ) {
251 CheckOrientation( tess );